Skip to main content
Log in

Comparative Capacity Assessment of CFRP Retrofit Techniques for RC Frames with Masonry Infills Using Pushover Analysis

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, nonlinear static pushover analysis was performed to compare the effectiveness of different carbon fibre-reinforced polymers (CFRP) rehabilitation schemes for existing masonry-infilled RC frames. A three-bay five-storey reinforced concrete (RC) frame with masonry infill walls designed according to previous building codes was modelled as a representative of existing low-rise RC frames. The earthquake retrofitting effects of twelve CFRP strengthening schemes were compared in terms of the global pushover curve, maximum load capacity, maximum interstorey drift ratio (IDR), plastification in the frames, and maximum energy dissipation capacity. The results indicate that the improper selection of a retrofitting scheme is likely to result in the change of the soft storey location, which would cause unexpected damage to structures. The CFRP rehabilitation of both columns and infills for the bottom three floors or more leads to a significant increase in maximum load, maximum IDR, maximum energy, and maximum number of plastic hinges in the frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehrabi, A.; Shing, P.B.; Schuller, M.; Noland, J.: Performance of masonry-infilled R/C frames under in-plane lateral loads. Report CU/SR-94/6. Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder (1994)

  2. Dolsek, M.; Fajfar, P.: Soft storey effects in uniformly infilled reinforced concrete frames. J. Earthq. Eng. 5(1), 1–12 (2001)

    Google Scholar 

  3. Verderame, G.M.; De Luca, F.; Ricci, P.; Manfredi, G.: Preliminary analysis of a soft-storey mechanism after the 2009 L’Aquila earthquake. Earthq. Eng. Struct. D 40(8), 925–944 (2011)

    Article  Google Scholar 

  4. Correnza, J.C.; Hutchinson, G.L.; Chandler, A.M.: Effect of transverse load-resisting elements on inelastic earthquake response of eccentric-plan buildings. Earthq. Eng. Struct. D 23(1), 75–89 (1994)

    Article  Google Scholar 

  5. De Stefano, M.; Faella, G.; Ramasco, R.: Inelastic seismic response of one-way plan-asymmetric systems under bi-directional ground motions. Earthq. Eng. Struct. D 27(4), 363–376 (1998)

    Article  Google Scholar 

  6. Cagatay, I.H.; Beklen, C.; Mosalam, K.M.: Investigation of short column effect of RC buildings failure and prevention. Comput. Concrete 7(6), 523–532 (2010)

    Article  Google Scholar 

  7. Bikce, M.: How to reduce short column effects in buildings with reinforced concrete infill walls on basement floors. Struct. Eng. Mech. 38(2), 249–259 (2011)

    Article  Google Scholar 

  8. Güneyisi, E.M.; Muhyaddin, G.F.: Comparative response assessment of different frames with diagonal bracings under lateral loading. Arab. J. Sci. Eng. 39(5), 3545–3558 (2014)

    Article  Google Scholar 

  9. Güneyisi, E.M.; Azez, I.: Seismic upgrading of structures with different retrofitting methods. Earthq. Struct. 10(3), 589–611 (2016)

    Article  Google Scholar 

  10. Guneyisi, E.M.; Tunca, O.; Azez, I.: Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces. Earthq. Struct. 8(6), 1349–1362 (2015)

    Article  Google Scholar 

  11. Özel, A.E.; Güneyisi, E.M.: Effects of eccentric steel bracing systems on seismic fragility curves of mid-rise R/C buildings: a case study. Struct. Saf. 33(1), 82–95 (2011)

    Article  Google Scholar 

  12. Kim, S.H.; Shinozuka, M.: Development of fragility curves of bridges retrofitted by column jacketing. Probab. Eng. Mech. 19(1–2), 105–112 (2004)

    Article  Google Scholar 

  13. Tavakoli, H.R.; Naghavi, F.; Goltabar, A.R.: Dynamic responses of the base-fixed and isolated building frames under far- and near-fault earthquakes. Arab. J. Sci. Eng. 39(4), 2573–2585 (2014)

    Article  Google Scholar 

  14. Komur, M.A.: Soft-story effects on the behavior of fixed-base and LRB base-isolated reinforced concrete buildings. Arab. J. Sci. Eng. 41(2), 1–11 (2016)

    Article  Google Scholar 

  15. Raheem, S.E.A.: Exploring seismic response of bridges with bidirectional coupled modelling of base isolation bearings system. Arab. J. Sci. Eng. 39(12), 8669–8679 (2014)

    Article  Google Scholar 

  16. Constantinou, M.C.; Symans, M.D.: Seismic response of structures with supplemental damping. Struct. Des. Tall Spec. Build. 2(2), 77–92 (2010)

    Article  Google Scholar 

  17. Providakis, C.P.: Effect of supplemental damping on LRB and FPS seismic isolators under near-fault ground motions. Soil. Dyn. Earthq. Eng. 29(1), 80–90 (2009)

    Article  Google Scholar 

  18. Güneyisi, E.M.; Altay, G.: Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes. Struct. Saf. 30(5), 461–480 (2008)

    Article  Google Scholar 

  19. Pampanin, S.; Bolognini, D.; Pavese, A.: Performance-based seismic retrofit strategy for existing reinforced concrete frame systems using fiber-reinforced polymer composites. J. Compos. Constr. 11(2), 211–226 (2007)

    Article  Google Scholar 

  20. Galal, K.; El-Sokkary, H.: Analytical evaluation of seismic performance of RC frames rehabilitated using FRP for increased ductility of members. J. Perform. Constr. Facil. 22(5), 276–288 (2008)

    Article  Google Scholar 

  21. Garcia, R.; Hajirasouliha, I.; Pilakoutas, K.: Seismic behaviour of deficient RC frames strengthened with CFRP composites. Eng. Struct. 32(10), 3075–3085 (2010)

    Article  Google Scholar 

  22. Zhu, J.T.; Wang, X.L.; Xu, Z.D.; Weng, C.H.: Experimental study on seismic behavior of RC frames strengthened with CFRP sheets. Compos. Struct. 93(6), 1595–1603 (2011)

    Article  Google Scholar 

  23. Sousa, L.; Monteiro, R.: Seismic retrofit options for non-structural building partition walls: impact on loss estimation and cost-benefit analysis. Eng. Struct. 161, 8–27 (2018)

    Article  Google Scholar 

  24. Erdem, I.; Akyuz, U.; Ersoy, U.; Ozcebe, G.: An experimental study on two different strengthening techniques for RC frames. Eng. Struct. 28(13), 1843–1851 (2006)

    Article  Google Scholar 

  25. Binici, B.; Ozcebe, G.; Ozcelik, R.: Analysis and design of FRP composites for seismic retrofit of infill walls in reinforced concrete frames. Compos. Part B Eng. 38(5–6), 575–583 (2007)

    Article  Google Scholar 

  26. Ilki, A.; Goksu, C.; Demir, C.; Kumbasar, N.: Seismic analysis of a RC frame building with FRP-retrofitted infill walls. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, vol. 2, pp. 1167–1175 (2007)

  27. Almusallam, T.H.; Al-Salloum, Y.A.: Behavior of FRP strengthened infill walls under in-plane seismic loading. J. Compos. Constr. 11(3), 308–318 (2007)

    Article  Google Scholar 

  28. Altin, S.; Anil, O.; Kara, M.E.; Kaya, M.: An experimental study on strengthening of masonry infilled RC frames using diagonal CFRP strips. Compos. Part B Eng. 39(4), 680–693 (2008)

    Article  Google Scholar 

  29. Erol, G.; Karadogan, H.F.; Cili, F.: Seismic strengthening of infilled RC frames by CFRP. In: Proceedings of the 14th World Conference on Earthquake Engineering (2008)

  30. Yuksel, E.; Ozkaynak, H.; Buyukozturk, O.; Yalcin, C.; Dindar, A.A.; Surmeli, M.; Tastan, D.: Performance of alternative CFRP retrofitting schemes used in infilled RC frames. Constr. Build. Mater. 24(4), 596–609 (2010)

  31. Kakaletsis, D.: Comparison of CFRP and alternative seismic retrofitting techniques for bare and infilled RC frames. J. Compos. Constr. 15(4), 565–577 (2011)

  32. Akin, E.; Canbay, E.; Binici, B.; Ozcebe, G.: Testing and analysis of infilled reinforced concrete frames strengthened with CFRP reinforcement. J. Reinf. Plast. Compos. 30(19), 1605–1620 (2011)

    Article  Google Scholar 

  33. NSPRC (National Standard of the People’s Republic of China): Code for design of concrete structures. GB 50010-2002, Ministry of Construction of People’s Republic of China, Beijing, China (2002) (in Chinese)

  34. Perform-3D User Guide: Nonlinear Analysis and Performance Assessment for 3D Structures. Computers and Structures, Inc., Berkeley, California, USA, Version 5 (2011)

  35. Nazari, Y.R.; Saatcioglu, M.: Seismic vulnerability assessment of concrete shear wall buildings through fragility analysis. J. Build. Eng. 12, 202–209 (2017)

    Article  Google Scholar 

  36. Zhou, Y.; Ge, P.L.; Han, J.P.; Lu, Z.: Vector-valued intensity measures for incremental dynamic analysis. Soil Dyn. Earthq. Eng. 100, 380–388 (2017)

    Article  Google Scholar 

  37. Guo, Z.H.: Principle of Reinforced Concrete, pp. 20–21 and 176–177. Tsinghua University Press, Beijing (1999) (in Chinese)

  38. Wang, Z.Y.; Wang, D.Y.; Smith, S.T.; Lu, D.G.: CFRP-confined square RC columns. I: experimental investigation. J. Compos. Constr. 16(2), 150–160 (2012)

    Article  Google Scholar 

  39. Wang, Z.Y.; Wang, D.Y.; Smith, S.T.; Lu, D.G.: CFRP-confined square RC columns. II: cyclic axial compression stress–strain model. J. Compos. Constr. 16(2), 161–170 (2012)

    Article  Google Scholar 

  40. Bennett, R.M.; Flanagan, R.D.; Adham, S.: Evaluation and analysis of the performance of masonary infills during the Northridge earthquake. Final Report for Submission to the National Science Foundation, Grant No. CMS-9416262 (1996)

  41. Akin, E.; Ozcebe, G.; Canbay, E.; Binici, B.: Numerical study on CFRP strengthening of reinforced concrete frames with masonry infill walls. J. Compos. Constr. 18(2), 04013034 (2014)

    Article  Google Scholar 

  42. O’Reilly, G.J.; Perrone, D.; Fox, M.; Monteiro, R.; Filiatrault, A.: Seismic assessment and loss estimation of existing school buildings in Italy. Eng. Struct. 168, 142–162 (2018)

    Article  Google Scholar 

  43. Vamvatsikos, D.; Fragiadakis, M.: Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthq. Eng. Struct. D 39(2), 141–163 (2010)

    Google Scholar 

  44. Pinho, R.; Marques, M.; Monteiro, R.; Casarotti, C.; Delgado, R.: Evaluation of nonlinear static procedures in the assessment of building frames. Earthq. Spectra 29(4), 1459–1476 (2013)

    Article  Google Scholar 

  45. FEMA (Federal Emergency Management Agency): NEHRP guidelines for seismic rehabilitation of buildings, FEMA-273. Washington, DC (1997)

  46. FEMA (Federal Emergency Management Agency): Prestandard and commentary for the seismic rehabilitation of building, FEMA-356, Washington, DC (2000)

  47. NSPRC (National Standard of the People’s Republic of China): Code for seismic design of buildings. GB50011-2010, Ministry of Construction of People’s Republic of China, Beijing, China (2010) (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Pan, X. & Bao, X. Comparative Capacity Assessment of CFRP Retrofit Techniques for RC Frames with Masonry Infills Using Pushover Analysis. Arab J Sci Eng 44, 4597–4612 (2019). https://doi.org/10.1007/s13369-018-3488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3488-4

Keywords

Navigation