Advertisement

Coupled Finite Element Modelling of Geosynthetic Reinforced Embankment Slope on Soft Soils Considering Small and Large Displacement Analyses

  • Rabah Derghoum
  • Mohamed Meksaouine
Research Article - Civil Engineering
  • 8 Downloads

Abstract

The behaviour of a real case of geosynthetic reinforced embankment slope (GRES) over soft cohesive soils with a prefabricated horizontal drains system (PHDs) was studied by two-dimensional finite element method, considering both small and large displacement assumptions. In order to determine the input geotechnical parameters accurately, laboratory tests and finite element back analysis were carried out. Coupled mechanical and hydraulic analysis was conducted to predict time-dependent behaviour of GRES under staged loading applied in the undrained conditions. The main objective of this study is to assess the effects of changes in geometry on deformation and stress behaviour during the consolidation process. Indeed, the developments of the settlement, horizontal displacement, excess pore pressures, normal effective stress and shear stress during and after construction periods were investigated. According to the large displacement computation results, the combined use of geosynthetic reinforcement with PHDs significantly reduces both the settlement and horizontal displacement but increases pore pressures. Therefore, the required number of construction stages can be reduced. The results of small and large displacement analyses show that the shear strength improvement in the upper embankment part is induced by the combination of surface roughness (skin friction) and arching effects within the embankment fill, while in the lower part it is mainly due to the confinement effect.

Keywords

Geosynthetic reinforced embankment slope Large displacements Coupled analysis Consolidation Confinement Arching effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–169 (1941)CrossRefMATHGoogle Scholar
  2. 2.
    Asaoka, A.; Noda, T.; Fernando, G.S.K.: Effects of changes in geometry on the linear elastic consolidation deformation. Soil Found. 37(1), 29–39 (1997)CrossRefGoogle Scholar
  3. 3.
    Carter, J.P.; Small, J.C.; Booker, J.R.: A theory of finite elastic consolidation. Int. J. Soli Struct. 13, 467–478 (1977)CrossRefMATHGoogle Scholar
  4. 4.
    Carter, J.P.; Booker, J.R.; Small, J.C.: The analysis of finite elasto-plastic consolidation. Int. J. Num. Anal. Method Geomech. 3, 107–129 (1979)CrossRefMATHGoogle Scholar
  5. 5.
    Prevost, J.H.: Nonlinear transient phenomena in saturated porous media. Comput. Method Appl. Mech. Eng. 20, 3–18 (1982)CrossRefMATHGoogle Scholar
  6. 6.
    Zienkiewicz, O.C.; Shiomi, T.: Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int. J. Num. Anal. Method Geomech. 8, 71–96 (1984)CrossRefMATHGoogle Scholar
  7. 7.
    Sanavia, L.; Schrefler, B.A.; Steinmann, P.: A formulation for unsaturated porous medium undergoing large inelastic strains. Comput. Mech. 28(2), 137–151 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Li, C.; Borja, R.I.; Reguriro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837–3870 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Nazem, M.; Sheng, D.; Carter, J.P.; Sloan, S.W.: Arbitrary Lagrangian–Eulerian method for large-strain consolidation problems. Int. Num. Anal. Method Geomech. 32(10), 23–50 (2008).  https://doi.org/10.1002/nag.657 MATHGoogle Scholar
  10. 10.
    Jewell, R.A.: A limit equilibrium design method for reinforced embankments on soft foundations. In: Proceedings of 2nd International Conference on Geotextile, Las Vegas, pp. 671–679 (1982)Google Scholar
  11. 11.
    British Standard Institution.: BS8006 Code of Practice for Strengthened/Reinforced Soils and Other Fills, London (1995)Google Scholar
  12. 12.
    Federal Highway Administration.: Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design and Construction Guidelines. FHWA-SA-96-071, Washington (1996)Google Scholar
  13. 13.
    Federal Highway Administration.: Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes. FHWA-NHI-10-024, Washington (2009)Google Scholar
  14. 14.
    Bergadod, D.T.; Lorenzo, G.A.; Long, P.V.: Limit equilibrium method and back analysis of geotextile reinforced embankments on the soft Bangkok clay—a case study. Geosynth. Int. 9(3), 217–245 (2002)CrossRefGoogle Scholar
  15. 15.
    Levent, T.; Ibrahim, F.Ö.; Celal, K.: Two and three-dimensional analysis of a slope failure in a lignite mine. Comput. Geosci. 37(2), 232–240 (2011).  https://doi.org/10.1016/j.cageo.2011.09.004 CrossRefGoogle Scholar
  16. 16.
    Rowe, R.K.; Soderman, K.L.: Reinforced embankments on very poor foundations. Geotext. Geomembr. 4, 65–81 (1986)CrossRefGoogle Scholar
  17. 17.
    Hird, C.C.; Pyrah, I.C.; Russell, D.; Cinicioglu, F.: Modelling the effect of vertical drains in two-dimensional finite element analyses of embankments on soft ground. Can. Geotech. J. 32(5), 795–807 (1995)CrossRefGoogle Scholar
  18. 18.
    Rowe, R.K.; Li, A.L.: Reinforced embankments over soft foundations under undrained and partially drained conditions. Geotext. Geomembr. 17(3), 129–146 (1999)CrossRefGoogle Scholar
  19. 19.
    Sharma, J.S.; Bolton, M.D.: Centrifugal and numerical modelling of reinforced embankments on soft clay installed with wick drains. Geotext. Geomembr. 19(1), 23–44 (2001)CrossRefGoogle Scholar
  20. 20.
    Borges, J.L.; Cardoso, A.S.: Structural behaviour and parametric study of reinforced embankments on soft clays. Comput. Geotech. 28(3), 209–33 (2001)CrossRefGoogle Scholar
  21. 21.
    Rowe, R.K.; Li, A.L.: Behaviour of reinforced embankments on soft rate sensitive soils. Geotechnique 52(1), 29–40 (2002)CrossRefGoogle Scholar
  22. 22.
    Rowe, R.K.; Li, A.L.: Geosynthetic-reinforced embankments over soft foundations. Geosynth. Int. 12(1), 50–85 (2005)CrossRefGoogle Scholar
  23. 23.
    Rowe, R.K.; Taechakumthorn, C.: Combined effect of PVDs and reinforcement on embankments over rate-sensitive soils. Geotext. Geomembr. 26(3), 239–249 (2008).  https://doi.org/10.1016/j.geotexmem.2007.10.001 CrossRefGoogle Scholar
  24. 24.
    Huang, J.; Han, J.: 3D coupled mechanical and hydraulic modeling of a geosynthetic reinforced deep mixed column-supported embankment. Geotext. Geomembr. 27(4), 272–80 (2009).  https://doi.org/10.1016/j.geotexmem.2009.01.001 CrossRefGoogle Scholar
  25. 25.
    Huang, J.; Han, J.: Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling. Comput. Geotech. 37(5), 638–648 (2010).  https://doi.org/10.1016/j.compgeo.2010.04.002 CrossRefGoogle Scholar
  26. 26.
    Venda Oliveira, P.J.; Lemos, L.J.L.: Numerical analysis of an embankment on soft soils considering large displacements. Comput. Geotech. 38(1), 88–93 (2011).  https://doi.org/10.1016/j.compgeo.2010.08.005 CrossRefGoogle Scholar
  27. 27.
    Liu, C.N.; Yang, K.H.; Ho, Y.H.; Chang, C.M.: Lessons learned from three failures on a high steep geogrid-reinforced slope. Geotext. Geomembr. 34(6), 131–143 (2012).  https://doi.org/10.1016/j.geotexmem.2012.05.003 CrossRefGoogle Scholar
  28. 28.
    Palmeira, E.M.; Fahel, A.R.S.; Araújo, G.L.S.: Behaviour of geogrid reinforced abutments on soft soil. Geotech. Eng. J. SEAGS & AGSSEA 44(4), 9–16 (2013)Google Scholar
  29. 29.
    Chen, J.F.; Jun, X.L.; Jian, F.X.; Zhen, M.S.: Stability analyses of a reinforced soil wall on soft soils using strength reduction method. Eng. Geol. 177(22), 83–92 (2014).  https://doi.org/10.1016/j.enggeo.2014.05.018 CrossRefGoogle Scholar
  30. 30.
    Chen, J.F.; Liu, J.X.; Xue, J.F.; Shi, Z.M.: Failure analyses of a reinforced embankment by strength reduction and limit equilibrium methods considering hardening of soft clay. Korean Soc. Civ. Eng. J. 18(4), 1–8 (2014)Google Scholar
  31. 31.
    Benmebarek, S.; Berrabah, F.; Benmebarek, N.: Effect of geosynthetic reinforced embankment on locally weak zones by numerical approach. Comput. Geotech. 65, 115–125 (2015).  https://doi.org/10.1016/j.compgeo.2014.12.004 CrossRefGoogle Scholar
  32. 32.
    Brinkgreve, R.B.J.; Broere, W.; Waterman, D.: PLAXIS Version 8 Reference Manual. Delft (2004)Google Scholar
  33. 33.
    Aiban, S.A.; Ali, S.M.: Nonwoven geotextile-sabkha and sand interface friction characteristics using pullout tests. Geosynth. Int 8(3), 193–220 (2001)CrossRefGoogle Scholar
  34. 34.
    Chai, J.C.; Shrestha, S.; Hino, T.; Ding, W.Q.; Yukihiko, K.; Carter, J.: 2D and 3D analyses of an embankment on clay improved by soil-cement columns. Comput. Geotech. 68, 28–37 (2015).  https://doi.org/10.1016/j.compgeo.2015.03.014 CrossRefGoogle Scholar
  35. 35.
    Schimelfenyg, P.; Fowler, J.; Leshchinsky, D.: Fabric reinforced containment dike, New Bedford superfund site. In: Proceedings of 4th International Conference on Geotextile and Geomembrane, Netherlands, vol. 1. pp. 149–154 (1990)Google Scholar
  36. 36.
    Han, J.; Oztoprak, S.; Parsons, R.L.; Huang, J.: Numerical analysis of foundation columns to support widening of embankments. Comput. Geotech. 34(6), 435–448 (2007).  https://doi.org/10.1016/j.compgeo.2007.01.006 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering08 Mai 1945 UniversityGuelmaAlgeria
  2. 2.Laboratoire Sols and HydrauliqueBadji Mokhtar UniversityAnnabaAlgeria
  3. 3.Department of HydraulicBadji Mokhtar UniversityAnnabaAlgeria

Personalised recommendations