Skip to main content

Advertisement

Log in

Linear-Quadratic Regulator Algorithm-Based Cascaded Control Scheme for Performance Enhancement of a Variable-Speed Wind Energy Conversion System

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wind power generation is an important trend of global electricity generation. Enormous efforts should be spent to keep the operation of the wind power systems at optimal conditions. This paper presents a linear-quadratic regulator (LQR) algorithm based on an optimal control scheme for enhancing the characteristics of the wind turbine generator systems (WTGSs). The variable-speed wind turbine driving a permanent-magnet synchronous is connected to the electric network through fully controlled power converters. The machine-side converter and the grid-side inverter are controlled using a cascaded LQR control scheme. LQR is an optimal controller, which achieves a rapid convergence and less computational complexity. The modelling and the control strategies of the system under study are elucidated in details. Real wind speed data captured from Zaafarana wind farm, Egypt, are taken into account for obtaining realistic responses. The effectiveness of the proposed controller is compared with that achieved using the genetic algorithm-based optimized proportional-plus-integral controller, considering the network disturbances. The simulation results are carried out using MATLAB/Simulink software that validate the efficiency of the proposed control scheme for enhancing the characteristics of the WTGSs connected to electric networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Wind Energy Council (GWEC): Annual market update 2015. Available at http://www.gwec.net, Accessed 31st Dec 2016

  2. Global Wind Energy Council (GWEC): Global wind energy outlook 2016. Available at: http://www.gwec.net. Accessed 31st Dec 2017

  3. Zeng, X.; Yao, J.; Chen, Z.; Hu, W.; Chen, Z.; Zhou, T.: Co-ordinated control strategy for hybrid wind farms with PMSG and FSIG under unbalanced grid voltage condition. IEEE Trans. Sustain. Energy 7(3), 1100–1110 (2016)

    Article  Google Scholar 

  4. Hasanien, Hany M.; Muyeen, S.M.: Affine projection algorithm based adaptive control scheme for operation of variable-speed wind generator. IET Gener. Transm. Distrib. 9(16), 2611–2616 (2015)

    Article  Google Scholar 

  5. Moataz, A.; Mohammed, E.A.: Enhanced flicker mitigation in DFIG-based distributed generation of wind power. IEEE Trans. Ind. Inf. 12(6), 2041–2049 (2016)

    Article  Google Scholar 

  6. Rahmanian, E.; Akbari, H.; Sheisi, G.H.: Maximum power point tracking in grid connected wind plant by using intelligent controller and switched reluctance generator. IEEE Trans. Sustain. Energy 8(3), 1313–1320 (2017)

    Article  Google Scholar 

  7. Zhang, Z.; Fang, H.; Gao, F.; Rodr’ıguez, J.; Kennel, R.: Multiple-vector model predictive power control for grid-tied wind turbine system with enhanced steady state control performance. IEEE Trans. Ind. Electron. 64(8), 6287–6298 (2017)

    Article  Google Scholar 

  8. Benadja, M.; Chandra, A.: Adaptive sensorless control of PMSGs based offshore wind farm and VSC-HVDC stations. IEEE J. Emerg. Sel. Top. Power Electron. 3(4), 918–931 (2015)

    Article  Google Scholar 

  9. Muyeen, S.M.; Al-Durra, Ahmed: Modeling and control strategies of fuzzy logic controlled inverter system for grid interconnected variable speed wind generator. IEEE Syst. J. 7(4), 817–824 (2013)

    Article  Google Scholar 

  10. Rad, A.B.; Lo, W.L.; Tsang, K.M.: Self-tuning PID controller using Newton–Raphson search method. IEEE Trans. Ind. Electron. 44(5), 717–725 (1997)

    Article  Google Scholar 

  11. Li, Y.; Ang, K.H.; Chong, G.C.Y.: PID control system analysis and design, problems, remedies, and future directions. IEEE Control Syst. Mag. 26(1), 32–41 (2006)

    Article  Google Scholar 

  12. Hasanien, H.M.: Design optimization of PID controller in automatic voltage regulator system using Taguchi combined genetic algorithm method. IEEE Syst. J. 7(4), 825–831 (2013)

    Article  Google Scholar 

  13. Passino, K.M.: Biomimicry of bacterial foraging for distribute optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  14. Hasanien Hany, M.: Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans. Ind. Electron. 58(9), 4048–4056 (2011)

    Article  Google Scholar 

  15. Islam, Gazi; Muyeen, S.M.; Al-Durra, Ahmed; Hasanien Hany, M.: RTDS implementation of an improved sliding mode based inverter controller for PV system. ISA Trans. 62, 50–59 (2016)

    Article  Google Scholar 

  16. Hasanien Hany, M.: An adaptive control strategy for low voltage ride through capability enhancement of grid connected photovoltaic power plants. IEEE Trans. Power Syst. 31(4), 3230–3237 (2016)

    Article  Google Scholar 

  17. Taj, T.A.; Hasanien, H.M.; Alolah, A.I.; Muyeen, S.M.: Transient stability enhancement of a grid-connected wind farm using an adaptive neuro-fuzzy controlled-flywheel energy storage system. IET Renew. Power Gener. 9(7), 792–800 (2015)

    Article  Google Scholar 

  18. Muyeen, S.M.; Hasanien, H.M.; Tamura, J.: Reduction of frequency fluctuation for wind farm connected power systems by an adaptive artificial neural network controlled energy capacitor system. IET Renew. Power Gener. 6(4), 226–235 (2012)

    Article  Google Scholar 

  19. Muyeen, S.M.; Hasanien Hany, M.; Al-Durra, A.: Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES. Energy Convers. Manag. 78(4), 412–420 (2014)

    Article  Google Scholar 

  20. Hasanien Hany, M.; Muyeen, S.M.: Design optimization of controller parameters used in variable-speed wind energy conversion system by genetic algorithms. IEEE Trans. Sustain. Energy 3(2), 200–208 (2012)

    Article  Google Scholar 

  21. Hasanien Hany, M.; Muyeen, S.M.: A Taguchi approach for optimum design of proportional-integral controllers in cascaded control scheme. IEEE Trans. Power Syst. 28(2), 1636–1644 (2013)

    Article  Google Scholar 

  22. Ambia, M.N.; Hasanien Hany, M.; Muyeen, S.M.: Harmony search algorithm-based controller parameters optimization for a distributed-generation system. IEEE Trans. Power Del. 30(1), 246–255 (2015)

    Article  Google Scholar 

  23. Hasanien Hany, M.: Shuffled frog leaping algorithm-based static synchronous compensator for transient stability improvement of a grid-connected wind farm. IET Renew. Power Gener. 8(6), 722–730 (2014)

    Article  Google Scholar 

  24. Hasanien Hany, M.: A set-membership affine projection algorithm-based adaptive-controlled SMES units for wind farms output power smoothing. IEEE Trans. Sustain. Energy 5(4), 1226–1233 (2014)

    Article  Google Scholar 

  25. Kalaam, Rahila N.; Muyeen, S.M.; Al-Durra, A.; Hasanien Hany, M.; Al-Wahedi, Khaled: Optimisation of controller parameters for grid-tied photovoltaic system at faulty network using artificial neural network-based cuckoo search algorithm. IET Renew. Power Gener. 11(12), 1517–1526 (2017)

    Article  Google Scholar 

  26. Olalla, C.; Leyva, R.; El Aroudi, A.; Queinnec, I.: Robust LQR control for PWM converters: an LMI approach. IEEE Trans. Ind. Electron. 56(7), 2548–2558 (2009)

    Article  Google Scholar 

  27. Nallusamy, S.; Velayutham, D.; Govindarajan, Uma: Design and implementation of a linear quadratic regulator controlled active power conditioner for effective source utilisation and voltage regulation in low-power wind energy conversion systems. IET Power Electron. 8(11), 2145–2155 (2015)

    Article  Google Scholar 

  28. Rubio, J.J.; Lopez, J.; Pacheco, J.; Encinas, R.: Control of two electrical plants. Asian J. Control 20(5), 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Pan, Y.; Sun, T.; Yu, H.: Composite adaptive dynamic surface control using online recorded data. Int. J. Robust Nonlinear Control 26(18), 3921–3936 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rubio, J.J.; Ochoa, G.; Balcazar, R.; Pacheco, J.: Uniform stable observer for the disturbance estimation in two renewable energy systems. ISA Trans. 58, 155–164 (2015)

    Article  Google Scholar 

  31. Pan, Y.; Liu, Y.; Xu, B.; Yu, H.: Hybrid feedback feed forward: an efficient design of adaptive neural network control. Neural Netw. 76, 122–134 (2016)

    Article  Google Scholar 

  32. Rubio, J.J.: Robust feedback linearization for nonlinear processes control. ISA Trans. 74, 155–164 (2018)

    Article  Google Scholar 

  33. Islam, F.; Hasanien, H.; Al-Durra, A.; Muyeen, S. M.: A new control strategy for smoothing of wind farm output using short-term ahead wind speed prediction and flywheel energy storage system. In: Proceeding of American Control Conference, ACC, Montreal, Canada, pp. 3026–3031 (2012)

  34. Thongam, J. S.; Bouchard, Ezzaidi, P.H.; Ouhrouche, M.: Wind speed sensorless maximum power point tracking control of variable speed wind energy conversion systems. In: IEEE International Conference Electric Machines and Drives Conference (IEMDC), Miami, USA, pp. 1832–1837 (2009)

  35. Ali Hasan, M.; Wu, B.: Comparison of stabilization methods for fixed-speed wind generator systems. IEEE Trans. Power Deliv. 25(1), 323–331 (2010)

    Article  Google Scholar 

  36. Prasad, L.B.; Tyagi, B.; Gupta, H.O.: Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller and LQR. In: IEEE International Conference on Control System Computing and Engineering, pp. 540–545 (2012)

  37. Mohammadbagher, A.; Zaeri, N.; Yaghoobi, M.: Comparison performance between PID and LQR controller for 4-leg voltage source inverter. In: International Conference on Circuit, System, and Simulation, pp. 230–234 (2011)

  38. Ogata, K.: Modern Control Engineering. PHI Learning Private Limited, New Delhi (2011)

    MATH  Google Scholar 

  39. Pradhan, J.K.; Ghosh, A.: Multi-input and multi-output proportional-integral-derivative controller design via linear quadratic regulator-linear matrix inequality approach. IET Control Theory Appl. 9(14), 2140–2145 (2015)

    Article  MathSciNet  Google Scholar 

  40. Haque, MdE; Negnevitsky, M.; Muttaqi, K.M.: A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator. IEEE Trans. Ind. Appl. 46(1), 331–339 (2010)

    Article  Google Scholar 

  41. Goldbert, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning. Reading. Addison-Wesley, Boston (1989)

    Google Scholar 

  42. Cabral, H.A.; Melo, M.T.: Using genetic algorithms for device modeling. IEEE Trans. Magn. 47(5), 1322–1325 (2011)

    Article  Google Scholar 

  43. Kassem, Ahmed M.: Modelling and robust control design of a standalone wind-based energy storage generation unit powering an induction motor-variable-displacement pressure-compensated pump. IET Renew. Power Gener. 10(3), 275–286 (2016)

    Article  Google Scholar 

  44. Zhang, Z.; Zhao, Y.; Qiao, W.; Qu, L.: A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines. IEEE Trans. Ind. Appl. 50(4), 2331–2341 (2014)

    Article  Google Scholar 

  45. Errouissi, Rachid; Muyeen, S.M.; Al-Durra, Ahmed; Leng, Siyu: Experimental validation of a robust continuous nonlinear model predictive control based grid-interlinked photovoltaic inverter. IEEE Trans. Ind. Electron. 63(7), 4495–4505 (2016)

    Article  Google Scholar 

  46. Kim, Y.-S.; Chung, I.-Y.; Moon, S.I.: Tuning of the PI controller parameters of a PMSG wind turbine to improve control performance under various wind speeds. Energies J. 8, 406–1425 (2015)

    Google Scholar 

  47. Chung, I.-Y.; Liu, W.; Cartes, D.A.; Collins, E.G.; Moon, S.-I.: Control methods of inverter-interfaced distributed generators in a micro grid system. IEEE Trans. Ind. Appl. 46(3), 1078–1088 (2010)

    Article  Google Scholar 

  48. Genetic Algorithm and Direct Search ToolboxTM User’s Guide, Release 2013b. The Math Works Press (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Soliman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, M.A., Hasanien, H.M., Azazi, H.Z. et al. Linear-Quadratic Regulator Algorithm-Based Cascaded Control Scheme for Performance Enhancement of a Variable-Speed Wind Energy Conversion System. Arab J Sci Eng 44, 2281–2293 (2019). https://doi.org/10.1007/s13369-018-3433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3433-6

Keywords

Navigation