Skip to main content
Log in

Comparative Thermodynamic Study of Refrigerants to Select the Best Environment-Friendly Refrigerant for Use in a Solar Ejector Cooling System

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a solar ejector cooling system is theoretically analyzed to evaluate refrigerants and determine their performance characteristics and environment-friendly nature for a fixed ejector geometry under a set of standard operating conditions. The results show that the refrigerant R1234yf is the best choice for the cycle, and is an environment-friendly refrigerant with thermo-physical properties similar to that of R134a. Moreover, it has a high entrainment ratio and is cheap when compared to other refrigerants, nonflammable, and safe. The results indicate that the cooling cycle COP increases during the day hours as the generator temperature increases and reaches a maximum value of 0.59 at an optimum generator temperature of 86 \({^{\circ }}\)C in the middle of the day. The overall efficiency of the system varied in the range 38–45%. Furthermore, it was found that increasing the generator pressure by 40% reduced the COP by 58.5% and increased the critical backpressure by 27.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({A}_{\mathrm{c} }\) :

Area of solar collector (m\(^{2}\))

\({m}_{\mathrm{c} }\) :

Solar collector mass flow rate (kg h\(^{-1}\) m\(^{-2}\))

\({m}_{\mathrm{p}}\) :

Primary mass flow rate (kg s\(^{-1}\))

\({m}_{\mathrm{s}}\) :

Secondary mass flow rate (kg s\(^{-1}\))

\(C_\mathrm{r}\) :

Compression ratio

H:

Enthalpy (kJ kg\(^{-1}\))

\({e}_{\mathrm{r}}\) :

Expansion ratio

\({P}_{\mathrm{cri}}\) :

Critical condenser back pressure (kPa)

\({P}_{\mathrm{e}}\) :

Evaporator pressure (kPa)

\({A}_{3}\) :

Area of mixing chamber (m\(^{2}\))

\({A}_{\mathrm{t}}\) :

Area of nozzle throat (m\(^{2}\))

A :

Primary flow location at the inlet of the nozzle

\({V}_\mathrm{s}\) :

Volume of storage tank (\(\hbox {m}^{3}\))

G :

Total irradiance (\(\hbox {W m}^{-2}\))

\(T_{\mathrm{g}}\) :

Temperature of generator (\({^{\circ }}\)C)

\({T}_{\mathrm{c}}\) :

Temperature of condenser (\({^{\circ }}\)C)

A_r:

Ejector area ratio

\({C}_{\mathrm{p}}\) :

Specific heat (\(\hbox {kJ kg}^{-1} \hbox {K}^{-1}\))

\({T}_{\mathrm{e}}\) :

Temperature of evaporator (\({^{\circ }}\)C)

M :

Mach number

R :

Gas constant (kJ kg\(^{-1}\) K\(^{-1}\))

Q :

Heat transfer rate (kW)

\({T}_{\mathrm{out~c}}\) :

Temperature at the exit of solar collector (\({^{\circ }}\)C)

\({T}_\mathrm{out~storage}\) :

Temperature at the exit of storage tank (\({^{\circ }}\)C)

\({T}_{\mathrm{a}}\) :

Temperature of the ambient air (\({^{\circ }}\)C)

\({T}_{\mathrm{cri}}\) :

Critical temperature (\({^{\circ }}\)C)

\({P}_{\mathrm{g}}\) :

Generator pressure (kPa)

COP:

Coefficient of performance

CFC:

Chlorofluorocarbon

EES:

Engineering equation solver

TRNSYS:

TRaNsient SYstem Simulation Program

ODP:

Ozone depletion potential

SECS:

Solar ejector cooling system

GWP:

Global warming potential

JUST:

Jordan University of Science and Technology

1-D:

One-dimensional

G:

Generator

E:

Evaporator

C:

Condenser

P:

Primary flow

P1:

Primary nozzle exit

\({p}_{\mathrm{y}}\) :

Primary flow at section y–y

S:

Secondary flow

M:

Mixing section m–m

\(\Omega \) :

Entrainment ratio

\(\eta _{\mathrm{o}}\) :

SECS overall efficiency

\(\eta _{\mathrm{sc}}\) :

Efficiency for solar collector

\({\gamma }\) :

Specific heat ratio

\({\phi }_{\mathrm{m}}\) :

Coefficient of heat losses

References

  1. Etier, I.; Al-Tarabsheh, A.; Ababneh, M.: Analysis of solar radiation in Jordan. Jordan J. Mech. Ind. Eng. 4(6), 733–738

  2. Vidal, H.; Colle, S.; Pereira, G.D.S.: Modelling and hourly simulation of a solar ejector cooling system. Appl. Therm. Eng. 26(7), 663–672 (2006)

    Article  Google Scholar 

  3. Keenan, J.H.: An investigation of ejector design by analysis and experiment. J. Appl. Mech. 17, 299 (1950)

    Google Scholar 

  4. Khalil, A.; Fatouh, M.; Elgendy, E.: Ejector design and theoretical study of R134a ejector refrigeration cycle. Int. J. Refrig. 34(7), 1684–1698 (2011)

    Article  Google Scholar 

  5. Abdulateef, J.M.; Murad, N.M.; Alghoul, M.A.; Zaharim, A.; Sopian, K.: Economic analysis of combines solar assisted ejector absorption refrigeration system. In: Proceedings of the 5th International Conference on Energy and Development - Environment - Biomedicine 2011, pp. 157–161 (2011)

  6. Pollerberg, C.; Ali, A.H.; Dötsch, C.: Experimental study on the performance of a solar driven steam jet ejector chiller. Energy Convers. Manag. 49, 3318–3325 (2008)

    Article  Google Scholar 

  7. Al-Khalidy, N.: Performance of solar refrigerant ejector refrigerating machine. ASHRAE Trans. 103(1), 56–64 (1997)

    Google Scholar 

  8. Sokolov, M.; Hershgal, D.: Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner. Sol. Energy 50(6), 507–516 (1993)

    Article  Google Scholar 

  9. Pollerberg, C.; Heinzel, A.; Weidner, E.: Model of a solar driven steam jet ejector chiller and investigation of its dynamic operational behavior. Sol. Energy 83, 732–742 (2009)

    Article  Google Scholar 

  10. Diaconu, B.M.: Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage. Renew. Energy 37, 266–276 (2012)

    Article  Google Scholar 

  11. Ma, X.; Zhang, W.; Omer, S.A.; Riffat, S.B.: Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl. Therm. Eng. 30(11), 1320–1325 (2010)

    Article  Google Scholar 

  12. Tashtoush, B.; Alshare, A.; Al-Rifai, S.: Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Convers. Manag. 100, 288–299 (2015)

    Article  Google Scholar 

  13. Cizungu, K.; Mani, A.; Groll, M.: Performance comparison of vapour jet refrigeration system with environment friendly working fluids. Appl. Therm. Eng. 21(5), 585–598 (2001)

    Article  Google Scholar 

  14. Huang, B.J.; Chang, J.M.; Petrenko, V.A.; Zhuk, K.B.: A solar ejector cooling system using refrigerant R141b. Sol. Energy 64(4), 223–226 (1998)

    Article  Google Scholar 

  15. Selvaraju, A.; Mani, A.: Analysis of an ejector with environment friendly refrigerants. Appl. Therm. Eng. 24(5), 827–838 (2004)

    Article  Google Scholar 

  16. Nehdi, E.; Kairouani, L.; Elakhdar, M.: A solar ejector air-conditioning system using environment-friendly working fluids. Int. J. Energy Res. 32(13), 1194–1201 (2008)

    Article  Google Scholar 

  17. Roman, R.; Hernandez, J.I.: Performance of ejector cooling systems using low ecological impact refrigerants. Int. J. Refrig. 34(7), 1707–1716 (2011)

    Article  Google Scholar 

  18. Fong, K.F.; Lee, C.K.; Chow, T.T.: Improvement of solar-electric compression refrigeration system through ejector-assisted vapour compression chiller for space conditioning in subtropical climate. Energy Build. 43(12), 3383–3390 (2011)

    Article  Google Scholar 

  19. Alexis, G.K.; Karayiannis, E.K.: A solar ejector cooling system using refrigerant R134a in the Athens area. Renew. Energy 30(9), 1457–1469 (2005)

    Article  Google Scholar 

  20. Sun, D.W.; Eames, I.W.: Performance characteristics of HCFC-123 ejector refrigeration cycles. Int. J. Energy Res. 20(10), 871–885 (1996)

    Article  Google Scholar 

  21. Steven, B.J.; Claudio, Z.; Alberto, C.: The fluorinated olefin R-1234ze(z) as a high-temperature heat pumping refrigerant. Int. J. Refrig. 32, 1412–22 (2009)

    Article  Google Scholar 

  22. Kasaeian, A. B.; Daviran, S.: Performance analysis of solar combined ejector-vapor compression cycle using environmental friendly refrigerants. IIUM Eng. J. 14(1) (2013)

  23. Li, H.; Cao, F.; Bu, X.; Wang, L.; Wang, X.: Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Appl. Energy 121, 96–103 (2014)

    Article  Google Scholar 

  24. Chen, J.; Havtun, H.; Palm, B.: Screening of working fluids for the ejector refrigeration system. Int. J. Refrig. 47, 1–14 (2014)

    Article  Google Scholar 

  25. Sun, D.-W.: Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Convers. Manag. 40, 873–84 (1999)

    Article  Google Scholar 

  26. Allouche, Y.; Varga, S.; Bouden, C.; Oliveira, A.: Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl. Energy 190, 600–611 (2017)

    Article  Google Scholar 

  27. Carrillo, J.; Flor, F.; Lissén, J.: Thermodynamic comparison of ejector cooling cycles. Ejector characterisation by means of entrainment ratio and compression efficiency. Int. J. Refrig. 74, 371–384 (2017)

    Article  Google Scholar 

  28. Megdouli, K.; Tashtoush, B.M.; Nahdi, E.; Elakhdar, M.; Kairouani, L.; Mhimid, A.: Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning. Int. J. Refrig. 70, 108–118 (2016)

    Article  Google Scholar 

  29. Chen, W.; Shi, Ch; Zhang, S.; Chen, H.; Chong, D.; Yan, J.: Theoretical analysis of ejector refrigeration system performance under overall modes. Appl. Energy 185, 2074–2084 (2017)

    Article  Google Scholar 

  30. Fang, Y.; Croquer, S.; Poncet, S.; Aidoun, Z.; Bartosiewicz, Y.: Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. Int. J. Refrig. 77, 87–98 (2017)

    Article  Google Scholar 

  31. Yataganbaba, A.; Kilicarslan, A.; Kurtbas, I.: Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. Int. J. Refrig. 60, 26–37 (2015)

    Article  Google Scholar 

  32. Tashtoush, B.; Alshare, A.; Al-Rifai, S.: Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Convers. Manag. 94, 300–310 (2015)

    Article  Google Scholar 

  33. Huang, B.; Chang, J.; Wang, C.; Petrenko, V.: A 1D analysis of ejector performance. Int. J. Refrig. 22, 354–364 (1999)

    Article  Google Scholar 

  34. Calm, J.M.; Hourahan, G.C.: Refrigerant data summary. Eng. Syst. 18(11), 74–88 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Support Fund in Jordan (Grant No. ENE/02/02/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bourhan Tashtoush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashtoush, B., Bani Younes, M. Comparative Thermodynamic Study of Refrigerants to Select the Best Environment-Friendly Refrigerant for Use in a Solar Ejector Cooling System. Arab J Sci Eng 44, 1165–1184 (2019). https://doi.org/10.1007/s13369-018-3427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3427-4

Keywords

Navigation