Skip to main content
Log in

New Approach of Integrated Advanced Oxidation Processes for the Treatment of Lube Oil Processing Wastewater

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The treatment of lube oil processing industrial wastewater has been proposed by advanced oxidation processes such as Fenton and electro Fenton (EF) oxidation processes. The method of EF was further extended to homogeneous electro Fenton (Homo-EF) and heterogeneous electro Fenton (Hetero-EF) method of treatments. Three different types of anode materials were selected for the electrochemical oxidation against graphite as a cathode, i.e. SS304/graphite, graphite/graphite and Ti-MMO/graphite. Among the studied methods of treatment, the Hetero-EF performed by Ti-MMO/graphite electrode system showed maximum COD removal efficiency than the other electrode systems. The optimized conditions for the Hetero-EF by Ti-MMO/graphite were observed to be electrochemical oxidation time 120 min, solution pH 2.5, potential 7.5 V. Further, the instrumental analysis of UV–visible spectrophotometer confirmed the removal of organic concentration from lubricating oil processing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EF:

Electro Fenton

Homo-EF:

Homogeneous electro Fenton

Hetero-EF:

Heterogeneous electro Fenton

SS304:

Stainless steel

Ti-MMO:

Titanium doped mixed metal oxide

AOP:

Advanced oxidation processes

\(\hbox {COD}_{0}\) and \(\hbox {COD}_{{t}}\) :

Chemical oxygen demand at initial (\(t=0\)) and at time “t” min

\(\hbox {K}_{\mathrm{app}}\) :

Apparent rate constant

W :

Specific energy consumption

V :

Average cell potential

I :

Current (A)

\(S_{\mathrm{v}}\) :

Sample volume in litres

\(\Delta \)COD:

Difference in COD

References

  1. Ahmed, A.F.; Ahmad, J.; Basma, Y.; Ramzi, T.: Assessment of alternative management techniques of tank bottom petroleum sludge in oman. J. Hazard. Mater. 141(3), 557–564 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.023

    Article  Google Scholar 

  2. Machın-Ramirez, C.; Okohc, A.I.; Morales, D.; Mayolo-Deloisa, K.; Quintero, R.; Trejo-Hernandez, M.R.: Slurry-phase biodegradation of weathered oily sludge waste. Chemosphere 70(4), 737–744 (2008). https://doi.org/10.1016/j.chemosphere.2007.06.017

    Article  Google Scholar 

  3. Chen, G.H.; He, G.H.: Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Sep. Purif. Technol. 31(1), 83–89 (2003). https://doi.org/10.1016/S1383-5866(02)00156-9

    Article  MathSciNet  Google Scholar 

  4. Bjarne, N.: Developments in membrane technology for water treatment. Desalination 153(1), 355–360 (2003). https://doi.org/10.1016/S0011-9164(02)01127-X

    Article  Google Scholar 

  5. Zhong, J.; Sun, X.J.; Wang, C.L.: Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Technol. 32(1), 93–98 (2003). https://doi.org/10.1016/S1383-5866(03)00067-4

    Article  Google Scholar 

  6. Benito, J.M.; Rios, G.; Ortea, E.; Fernandez, E.; Cambiella, A.; Pazos, C.; Coca, J.: Design and construction of a modular pilot for the treatment of oil-containing wastewaters. Desalination 147(1), 5–10 (2002). https://doi.org/10.1016/S0011-9164(02)00563-5

    Article  Google Scholar 

  7. Li, Y.J.; Wang, F.; Zhou, G.D.: Aniline degradation by electrocatalytic oxidation. Chemosphere 53(10), 1229–1234 (2003). https://doi.org/10.1016/S0045-6535(03)00590-3

    Article  Google Scholar 

  8. Koper, M.T.M.: Combining experiment and theory for understanding electrolysis. J. Electroanal. Chem. 574(2), 375–386 (2005). https://doi.org/10.1016/j.jelechem.2003.12.040

    Article  Google Scholar 

  9. Santos, M.R.G.; Goulart, M.O.F.; Tonholo, J.; Zanta, C.L.P.S.: The application of electrochemical technology to the remediation of oily wastewater. Chemosphere 64(3), 393–399 (2006). https://doi.org/10.1016/j.chemosphere.2005.12.036

    Article  Google Scholar 

  10. Hayat, S.; Ahmad, I.; Azam, Z.M.; Ahmad, A.; Inam, A.: Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Bioresour. Technol. 84(2), 159–163 (2002)

    Article  Google Scholar 

  11. Ting, W.P.; Lu, M.C.; Huang, Y.H.: The reactor design and comparison of Fenton, electro-Fenton and photo-Fenton processes for mineralization of benzene and sulfonic acid (BSA). J. Hazard. Mater. 156(1), 421–427 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.031

    Article  Google Scholar 

  12. Lu, M.C.; Chang, Y.F.; Chen, I.M.; Huang, Y.Y.: Effect of chloride ions on oxidation of aniline by Fenton’s reagent. J. Environ. Manag. 75(2), 177–182 (2005). https://doi.org/10.1016/j.jenvman.2004.12.003

    Article  Google Scholar 

  13. Qiang, Z.M.; Chang, J.H.; Huang, C.P.: Electrochemical generation of Fe\(^{2+}\) in Fenton oxidation processes. Water Res. 37(6), 1308–1319 (2003). https://doi.org/10.1016/S0043-1354(02)00461-X

    Article  Google Scholar 

  14. Rosales, E.; Iglesias, O.; Pazos, M.; Sanroman, M.A.: Decolorisation of dyes under electro-Fenton process using Fe alginate gel beads. J. Hazard. Mater. 213(1), 369–377 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.005

    Article  Google Scholar 

  15. Peralta-Hernandez, J.M.; Meas-Vong, Y.; Rodriguez, F.J.; Chapman, T.W.; Maldonado, M.I.; Godinez, L.A.: In situ electrochemical and photo-electrochemical generation of the Fenton reagent: a potentially important new water treatment technology. Water Res. 40(9), 1754–1762 (2006). https://doi.org/10.1016/j.watres.2006.03.004

    Article  Google Scholar 

  16. Duesterberg, C.K.; Waite, T.D.: A process optimization of Fenton oxidation using kinetic modeling. Environ. Sci. Technol. 40(13), 4189–4195 (2006). https://doi.org/10.1021/es060311

    Article  Google Scholar 

  17. Brillas, E.; Sires, I.; Oturan, M.A.: Electro-Fenton process and related electrochemical technologies based Fenton’s chemistry. Chem. Rev. 109(12), 6570–6631 (2009). https://doi.org/10.1021/cr900136g

    Article  Google Scholar 

  18. Sires, I.; Guivarch, E.; Oturan, N.; Oturan, M.A.: Efficient removal of triphenylmethane dyes from aqueous medium by in situ electro generated Fenton’s reagent at carbon-felt cathode. Chemosphere 72(4), 592–600 (2008). https://doi.org/10.1016/j.chemosphere.2008.03.010

    Article  Google Scholar 

  19. Oturan, M.A.; Guivarch, E.; Oturan, N.; Sires, I.: Oxidation pathways of malachite green by Fe\(^{3+}\) catalyzed electro-Fenton process. Appl. Catal. B Environ. 82(3), 244–254 (2008). https://doi.org/10.1016/j.apcatb.2008.01.016

    Article  Google Scholar 

  20. Quang, Z.; Chang, J.H.; Huang, C.P.: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 36(1), 85–94 (2002). https://doi.org/10.1016/S0043-1354(01)00235-4

    Article  Google Scholar 

  21. Duesterberg, C.K.; Mylon, S.E.; Waite, T.D.: ph effects on iron-catalyzed oxidation using Fentons reagent. Environ. Sci. Technol. 42(22), 8522–8527 (2008). https://doi.org/10.1021/es801720d

    Article  Google Scholar 

  22. Bielski, B.H.J.; Allen, A.O.: Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. 81(11), 1048–1050 (1977). https://doi.org/10.1021/j100526a005

    Article  Google Scholar 

  23. Chou, S.S.; Huang, Y.H.; Lee, S.N.; Huang, G.H.; Huang, C.P.: Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 33(3), 751–759 (1999). https://doi.org/10.1016/S0043-1354(98)00276-0

    Article  Google Scholar 

  24. Moreno, A.D.; Frontana-Uribe, B.A.; Zamora, R.M.R.: Electro-Fenton as a feasible advanced treatment of process to produce reclaimed water. Water Sci. Technol. 50(2), 83–90 (2004)

    Article  Google Scholar 

  25. Casado, J.; Fornaguera, J.; Galan, M.I.: Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure. Water Res. 40(13), 2511–2516 (2006). https://doi.org/10.1016/j.watres.2006.04.047

    Article  Google Scholar 

  26. Ghoneim, M.M.; El-Desoky, H.S.; Zidan, N.M.: Electro-Fenton oxidation of sunset yellow FCF azo-dye in aqueous solution. Desalination 274(1), 22–30 (2011). https://doi.org/10.1016/j.desal.2011.01.062

    Article  Google Scholar 

  27. Wang, C.T.; Hu, J.L.; Chou, W.L.; Kuo, Y.M.: Removal of color from real dye wastewater by electro-Fenton technology using a three-dimensional graphite electrode. J. Hazard. Mater. 152(2), 601–606 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.023

    Article  Google Scholar 

  28. Virkutyte, J.; Rokhina, E.; Jegatheesan, V.: Optimization of electro-Fenton denitrification of model wastewater using a response surface methodology. Bioresour. Technol. 101(5), 1440–1446 (2010). https://doi.org/10.1016/j.biortech.2009.10.041

    Article  Google Scholar 

  29. Li, H.; Zhu, X.; Jiang, Y.; Ni, J.: Comparative electrochemical degradation of phthalic acid esters using boron-doped diamond and pt anodes. Chemosphere 80(8), 845–851 (2010). https://doi.org/10.1016/j.chemosphere.2010.06.006

    Article  Google Scholar 

  30. Agladze, G.R.; Tsurtsumia, G.S.; Jung, B.I.; Kim, J.S.; Gorelishvili, G.: Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells. J. Appl. Electrochem. 37(3), 375–383 (2007). https://doi.org/10.1007/s10800-006-9269-x

    Article  Google Scholar 

  31. Wang, A.M.; Qu, J.H.; Ru, J.; Liu, H.J.; Ge, J.T.: Mineralization of an azo dye acid red 14 by electro-Fenton‘s reagent using a activated carbon fiber cathode. Dyes Pigments 65(3), 227–233 (2005). https://doi.org/10.1016/j.dyepig.2004.07.019

    Article  Google Scholar 

  32. Ting, W.P.; Lu, M.C.; Huang, Y.H.: Kinetics of 2,6-dimethylamine degradation by electro-Fenton process. J. Hazard. Mater. 161(2), 1484–1490 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.119

    Article  Google Scholar 

  33. Gandini, D.; Mahe, E.; Michaud, P.A.; Haenni, W.; Perret, A.; Comninellis, C.: oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30(12), 1345–1350 (2000). https://doi.org/10.1023/A:1026526729357

    Article  Google Scholar 

  34. Shen, Z.M.; Wu, D.; Yang, J.; Yuan, T.; Wang, W.H.; Jia, J.P.: Methods to improve electrochemical treatment effect of dye wastewater. J. Hazard. Mater. 131(1), 90–97 (2006). https://doi.org/10.1016/j.jhazmat.2005.09.010

    Article  Google Scholar 

  35. Korbahti, B.K.; Aktaş, N.; Tanyolac, A.: Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 148(1), 83–90 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to The Head, Environment and Sustainability Department and the Director, CSIR-Institute of Minerals and Materials Technology for their encouragement and support. The authors also thank the Council of Scientific and Industrial Research, India, for the financial assistance by SETCA project (CSC-0113) to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boopathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boopathy, R., Das, T. New Approach of Integrated Advanced Oxidation Processes for the Treatment of Lube Oil Processing Wastewater. Arab J Sci Eng 43, 6229–6236 (2018). https://doi.org/10.1007/s13369-018-3417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3417-6

Keywords

Navigation