Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2253–2263 | Cite as

A Novel Time-Switching Relaying Protocol for Multi-user Relay Networks with SWIPT

  • Ahmed A. Al-habobEmail author
  • Anas M. Salhab
  • Salam A. Zummo
Research Article - Electrical Engineering


In this paper, we propose a new time-switching relaying (TSR) protocol for dual-hop relay networks with simultaneous wireless information and power transfer (SWIPT) technique. The proposed protocol maintains the same receiver complexity of the conventional TSR protocol with the ability for implementing them using the same hardware. We study the performance of the proposed TSR protocol and compare it with the conventional TSR and power-splitting relaying protocols. Unified analytical expressions are derived for the outage probability, achievable throughput, and the ergodic channel capacity, in addition to studying the performance at high signal-to-noise ratio values where a unified approximate expression for the outage probability and expressions for the diversity order and coding gain are provided. The results show that the proposed TSR protocol outperforms the conventional TSR protocol in terms of outage probability and throughput. Also, findings illustrate that applying the SWIPT technique in multi-destination relay networks results in a unity diversity order. In contrast to conventional relaying networks, results show that the best location for the relay node in SWIPT relay networks is either near the source or the destinations but not in between.


Dual-hop relay networks Simultaneous wireless information and power transfer Time-switching Power splitting Opportunistic user scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by the National Plan for Science, Technology and Innovation (Maarifah)-King Abdulaziz City for Science and Technologythrough the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM)-the Kingdom of Saudi Arabia, under grant number 15-ELE4157-04. The work was also supported by the Deanship of Scientific Research in KFUPM through grant number FT161009.


  1. 1.
    Varshney, L.R.: Transporting information and energy simultaneously. In: Proceedings of IEEE International Symposium on Information Theory, Toronto, ON, Canada, pp. 1612–1616 (2008)Google Scholar
  2. 2.
    Grover, P.; Sahai, A.: Shannon meets tesla: Wireless information and power transfer. In: Proceedings of IEEE International Symposium on Information Theory, Austin, TX, USA, pp. 2363–2367 (2010)Google Scholar
  3. 3.
    Zhang, R.; Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wireless Commun. 12(5), 1989–2001 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhou, X.; Zhang, R.; Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013)CrossRefGoogle Scholar
  5. 5.
    Lu, X.; Wang, P.; Niyato, D.; Hossain, E.: Dynamic spectrum access in cognitive radio networks with rf energy harvesting. IEEE Wireless Commun. 21(3), 102–110 (2014)CrossRefGoogle Scholar
  6. 6.
    Perera, T.D.P.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J.: Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017)CrossRefGoogle Scholar
  7. 7.
    Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun. 12(7), 3622–3636 (2013)CrossRefGoogle Scholar
  8. 8.
    Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In: Proceedings of IEEE International Conference on Communications (ICC), Sydney, Australia, pp. 4066–4071 (2014)Google Scholar
  9. 9.
    Ju, M.; Kang, K.M.; Hwang, K.S.; Jeong, C.: Maximum transmission rate of PSR/TSR protocols in wireless energy harvesting DF-based relay networks. IEEE J. Sel. Areas in Commun. 33(12), 2701–2717 (2015)CrossRefGoogle Scholar
  10. 10.
    Yin, S.; Qu, Z.: Resource allocation in cooperative networks with wireless information and power transfer. IEEE Trans. Veh. Technol PP(99), 1–1 (2017)Google Scholar
  11. 11.
    Verma, D.K.; Chang, R.Y.; Chien, F.T.: Energy-assisted decode-and-forward for energy harvesting cooperative cognitive networks. IEEE Trans. Cogn. Commun. Netw. 3(3), 328–342 (2017)CrossRefGoogle Scholar
  12. 12.
    Atapattu, S.; Evans, J.: Optimal energy harvesting protocols for wireless relay networks. IEEE Trans. Wireless Commun. 15(8), 5789–5803 (2016)CrossRefGoogle Scholar
  13. 13.
    Do, N.T., da Costa, D.B., Duong, T.Q., An, B.: Transmit antenna selection schemes for MISO-NOMA cooperative downlink transmissions with hybrid SWIPT protocol. In: Proceedings of 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)Google Scholar
  14. 14.
    Yang, N.; Elkashlan, M.; Yuan, J.: Impact of opportunistic scheduling on cooperative dual-hop relay networks. IEEE Trans. Commun. 59(3), 689–694 (2011)CrossRefGoogle Scholar
  15. 15.
    Hemachandra, K.T.; Beaulieu, N.C.: Outage analysis of opportunistic scheduling in dual-hop multiuser relay networks in the presence of interference. IEEE Trans. Commun. 61(5), 1786–1796 (2013)CrossRefGoogle Scholar
  16. 16.
    Yang, L.; Kang, M.; Alouini, M.-S.: On the capacity-fairness tradeoff in multiuser diversity systems. IEEE Trans. Veh. Technol. 56(4), 1901–1907 (2007)CrossRefGoogle Scholar
  17. 17.
    Zabini, F.; Bazzi, A.; Masini, B.M.; Verdone, R.: Optimal performance versus fairness tradeoff for resource allocation in wireless systems. IEEE Trans. Wireless Commun. 16(4), 2587–2600 (2017)CrossRefGoogle Scholar
  18. 18.
    Do, N.T.; da Costa, D.B.; Duong, T.Q.; An, B.: A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun. Lett. 21(3), 664–667 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N.: The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Trans. Wireless Commun. 16(7), 4332–4343 (2017)CrossRefGoogle Scholar
  20. 20.
    Liu, H.; Kim, K.J.; Kwak, K.S.; Poor, H.V.: QoS-Constrained relay control for full-duplex relaying with SWIPT. IEEE Trans. Wireless Commun. 16(5), 2936–2949 (2017)CrossRefGoogle Scholar
  21. 21.
    Zanella, A.; Bazzi, A.; Masini, B.M.: Relay selection analysis for an opportunistic two-hop multi-user system in a poisson field of nodes. IEEE Trans. Wireless Commun. 16(2), 1281–1293 (2017)CrossRefGoogle Scholar
  22. 22.
    Nguyen, X.; Do, D.: Optimal power allocation and throughput performance of full-duplex df relaying networks with wireless power transfer-aware channel. EURASIP J. Wireless Commun. and Netw. 2017(1), 152 (2017)CrossRefGoogle Scholar
  23. 23.
    Ding, Z.; Poor, H.V.: Multi-user SWIPT cooperative networks: Is the max-min criterion still diversity-optimal? IEEE Trans. Wireless Commun. 15(1), 553–567 (2016)CrossRefGoogle Scholar
  24. 24.
    Ban, T.W.; Choi, W.; Jung, B.C.; Sung, D.K.: Multi-user diversity in a spectrum sharing system. IEEE Trans. Wireless Commun. 8(1), 102–106 (2009)CrossRefGoogle Scholar
  25. 25.
    Ghasemi, A.; Sousa, E.S.: Fundamental limits of spectrum-sharing in fading environments. IEEE Trans. Wireless Commun. 6(2), 649–658 (2007)CrossRefGoogle Scholar
  26. 26.
    Gradshteyn, I.S.; Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th edn. Academic, San Diego (2014)zbMATHGoogle Scholar
  27. 27.
    Van Der Laan, C.G.; Temme, N.M.: Calculation of Special Functions: The Gamma Function, the Exponential Integrals, and Error-like Functions, 2nd edn. ser. CWI Tract 10. Amsterdam (1986)Google Scholar
  28. 28.
    Simon, M .K.; Alouini, M.-S.: Digital Communication over Fading Channels, vol. 95, 2nd edn. Wiley, New York (2005)Google Scholar
  29. 29.
    Al-habob, A.A.; Salhab, A.M.; Zummo, S.A.; Alouini, M.-S.: Multi-destination cognitive radio relay network with SWIPT and multiple primary receivers. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, pp. 1–6 (2017)Google Scholar
  30. 30.
    Wolfram. “The Wolfram functions site” (2013). [Online].

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ahmed A. Al-habob
    • 1
    Email author
  • Anas M. Salhab
    • 2
  • Salam A. Zummo
    • 2
  1. 1.Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Electrical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations