Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4349–4358 | Cite as

Effects of Aging on the Multiscale Properties of SBS-Modified Asphalt

  • Zhen YangEmail author
  • Xiaoning Zhang
  • Jiangmiao Yu
  • Wei Xu
Research Article - Civil Engineering


This study investigated the effects of aging on the micromechanics, chemical functional groups, and rheological properties of SBS-modified asphalt, with the help of atomic force microscopy, Fourier transform infrared spectroscopy, and dynamic shear rheometry, respectively. Aging has a significant effect on the micromechanics of asphalt and its distribution, especially in the pressure aging–vessel aging process. The micromechanics are affected by the chemical functional groups directly, and the resulting changes are the outcome of the synergistic effect of the aging of base asphalt and the degradation of the SBS modifier. The micromechanics were quantitatively consistent with the rheological properties, thus indicating that the micromechanics of the asphalt surface contribute to the macro-mechanical behavior. Such a systematic approach for the characterization of the aging process of SBS-modified asphalt could provide a scientific method for improving the properties and recycling of SBS-modified asphalt.


Asphalt SBS Oxidative aging Atomic force microscopy Chemical functional group Rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was mainly supported by the Natural Science Foundation of China (Grant number 51678251), the Special Fund for Science and Technology Development (Grant number 2017A010103036), the Fundamental Research Funds for the Central Universities (Grant number SCUT.2015ZZ074), the Guangzhou Municipal Science and Technology Program in China (Grant number 1563000255), the Guangdong Province science and technology plan projects (Grant number 2014B010105005). The writers also appreciate the staff and facility support from the Road Research Institution (RRI) at the South China University of Technology.


  1. 1.
    Wang, Y.; Sun, L.; Zhou, J.: Pavement performance evaluation of recycled styrene–butadiene–styrene-modified asphalt mixture. Int. J. Pavement Eng. 18(5), 404–413 (2017)CrossRefGoogle Scholar
  2. 2.
    Huang, W.: Aging performance of SBS modified asphalt. Pet. Sci. Technol. 26(17), 2108–2114 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhao, Z.; Wu, S.; Liu, Q.: Investigation of the effect of layer double hydroxides on comprehensive properties of SBS-modified asphalt mixture. Mater. Res. Innov. 19(sup5), S5–764 (2015)Google Scholar
  4. 4.
    Zhao, X.; Wang, S.; Wang, Q.; Yao, H.: Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel 184, 242–247 (2016)CrossRefGoogle Scholar
  5. 5.
    Blab, B.H.R.: Enhancing triaxial cyclic compression testing of hot mix asphalt by introducing cyclic confining pressure. Road Mater. Pavement Des. 15(1), 16–34 (2014)CrossRefGoogle Scholar
  6. 6.
    Lu, X.; Isacsson, U.: Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 77(9–10), 961–972 (1998)CrossRefGoogle Scholar
  7. 7.
    Chen, H.X.; Zhou, Y.; WANG, B.G.: Dynamic mechanics performance of aged SBS modified-asphalt. J. Chang’an Univ. (Nat. Sci. Edit.) 1, 002 (2009)Google Scholar
  8. 8.
    Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J.: Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80(4), 483–488 (2001)CrossRefGoogle Scholar
  9. 9.
    Kim, K.W.; Burati Jr., J.L.: Use of GPC chromatograms to characterize aged asphalt cements. J. Mater. Civ. Eng. 5(1), 41–52 (1993)CrossRefGoogle Scholar
  10. 10.
    Cong, P.; Luo, W.; Xu, P.; Zhao, H.: Investigation on recycling of SBS modified asphalt binders containing fresh asphalt and rejuvenating agents. Constr. Build. Mater. 91, 225–231 (2015)CrossRefGoogle Scholar
  11. 11.
    Eilers, H.: The colloidal structure of asphalt. J. Phys. Chem. 53(8), 1195–1211 (1949)CrossRefGoogle Scholar
  12. 12.
    Lesueur, D.: The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 145(1), 42–82 (2009)CrossRefGoogle Scholar
  13. 13.
    Hofko, B.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; Handle, F.; Hospodka, M.; et al.: Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 49(3), 829–841 (2016)CrossRefGoogle Scholar
  14. 14.
    Handle, F.; Füssl, J.; Neudl, S.; Grossegger, D.; Eberhardsteiner, L.; Hofko, B.; et al.: The bitumen microstructure: a fluorescent approach. Mater. Struct. 49(1–2), 167–180 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, J.S.; Liao, M.C.; Shiah, M.S.: Asphalt modified by styrene–butadiene–styrene triblock copolymer: morphology and model. J. Mater. Civ. Eng. 14(3), 224–229 (2002)CrossRefGoogle Scholar
  16. 16.
    Kang, Y.; Song, M.; Pu, L.; Liu, T.: Rheological behaviours of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Constr. Build. Mater. 76, 343–350 (2015)CrossRefGoogle Scholar
  17. 17.
    Sengoz, B.; Isikyakar, G.: Analysis of styrene–butadiene–styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 150(2), 424–432 (2008)CrossRefGoogle Scholar
  18. 18.
    Eberhardsteiner, L.; Füssl, J.; Hofko, B.; Handle, F.; Hospodka, M.; Blab, R.; et al.: Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling. Mater. Struct. 48(10), 3099–3112 (2015)CrossRefGoogle Scholar
  19. 19.
    Eberhardsteiner, L.; Füssl, J.; Hofko, B.; Handle, F.; Hospodka, M.; Blab, R.; et al.: Towards a microstructural model of bitumen aging behavior. Int. J. Pavement Eng. 16(10), 939–949 (2014)CrossRefGoogle Scholar
  20. 20.
    Loeber, L.; Muller, G.; Morel, J.; Sutton, O.: Bitumen in colloid science: a chemical, structural and rheological approach. Fuel 77(13), 1443–1450 (1998)CrossRefGoogle Scholar
  21. 21.
    Pauli, A.T.; Branthaver, J.F.; Robertson, R.E.; Grimes, W.; Eggleston, C.M.: Atomic force microscopy investigation of SHRP asphalts: heavy oil and resid compatibility and stability. Am. Chem. Soc. Div. Pet. Chem. 46(2), 104–110 (2001)Google Scholar
  22. 22.
    Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F.: Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 12(4), 291–309 (2011)CrossRefGoogle Scholar
  23. 23.
    Das, P.K.; Kringos, N.; Wallqvist, V.; Birgisson, B.: Micromechanical investigation of phase separation in bitumen by combining atomic force microscopy with differential scanning calorimetry results. Road Mater. Pavement Des. 14(sup1), 25–37 (2013)CrossRefGoogle Scholar
  24. 24.
    Soenen, H.; Besamusca, J.; Fischer, H.R.; Poulikakos, L.D.; Planche, J.P.; Das, P.K.; et al.: Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater. Struct. 47(7), 1205–1220 (2014)CrossRefGoogle Scholar
  25. 25.
    Lyne, Å.L.; Wallqvist, V.; Rutland, M.W.; Claesson, P.; Birgisson, B.: Surface wrinkling: the phenomenon causing bees in bitumen. J. Mater. Sci. 48(20), 6970–6976 (2013)CrossRefGoogle Scholar
  26. 26.
    Allen, R.G.; Little, D.N.; Bhasin, A.; Glover, C.J.: The effects of chemical composition on asphalt microstructure and their association to pavement performance. Int. J. Pavement Eng. 15(1), 9–22 (2014)CrossRefGoogle Scholar
  27. 27.
    Li, Y.; Yang, J.; Tan, T.: Study on adhesion between asphalt binders and aggregate minerals under ambient conditions using particle-modified atomic force microscope probes. Constr. Build. Mater. 101, 159–165 (2015)CrossRefGoogle Scholar
  28. 28.
    Lyne, Å.L.; Wallqvist, V.; Birgisson, B.: Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy. Fuel 113, 248–256 (2013)CrossRefGoogle Scholar
  29. 29.
    Yu, X.; Zaumanis, M.; Dos Santos, S.; Poulikakos, L.D.: Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 135, 162–171 (2014)CrossRefGoogle Scholar
  30. 30.
    Allen, R.G.; Little, D.N.; Bhasin, A.: Structural characterization of micromechanical properties in asphalt using atomic force microscopy. J. Mater. Civ. Eng. 24(10), 1317–1327 (2012)CrossRefGoogle Scholar
  31. 31.
    Wang, P.E.Y.; Zhao, K.; Glover, C.; Chen, L.; Wen, Y.; Chong, D.; et al.: Effects of aging on the properties of asphalt at the nanoscale. Constr. Build. Mater. 80, 244–254 (2015)CrossRefGoogle Scholar
  32. 32.
    Hofko, B.; Hospodka, M.; Blab, R.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; et al.: Impact of field ageing on low-temperature performance of binder and hot mix asphalt. In: ISAP Conference on Asphalt Pavements (2014)Google Scholar
  33. 33.
    Steiner, D.; Hofko, B.; Hospodka, M.; Handle, F.; Grothe, H.; Füssl, J.; et al.: Towards an optimised lab procedure for long-term oxidative ageing of asphalt mix specimen. Int. J. Pavement Eng. 17(6), 471–477 (2016)CrossRefGoogle Scholar
  34. 34.
    Fischer, H.; et al.: Challenges While Performing AFM on Bitumen. Multi-scale Modeling and Characterization of Infrastructure Materials, pp. 89–98. Springer, Amsterdam (2013)CrossRefGoogle Scholar
  35. 35.
    Nahar, S.N.; Schmets, A.J.M.; Schitter, G.; Scarpas, A.: Quantitative nanomechanical property mapping of bitumen micro-phases by peak-force atomic force microscopy. In: 12th ISAP Conference on, vol. 30. Asphalt Pavements (2014)Google Scholar
  36. 36.
    Das, P.K.: Ageing of asphalt mixtures: micro-scale and mixture morphology investigation. Doctoral Dissertation, KTH Royal Institute of Technology (2014)Google Scholar
  37. 37.
    Navarro, F.J.; Partal, P.; García-Morales, M.; Martinez-Boza, F.J.; Gallegos, C.: Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer. Fuel 86(15), 2291–2299 (2007)CrossRefGoogle Scholar
  38. 38.
    Nazzal, M.D.; Qtaish, L.A.: The use of atomic force micros-copy to evaluate warm mix asphalt. Final Report, FHWA/OH-2012/19, Microscopy (2013)Google Scholar
  39. 39.
    Zhang, H.; Jia, X.; Yu, J.; Xue, L.: Effect of expanded vermiculite on microstructures and aging properties of styrene–butadiene–styrene copolymer modified bitumen. Constr. Build. Mater. 40(3), 224–230 (2013)Google Scholar
  40. 40.
    Zhang, H.; Yu, J.; Wang, H.; Xue, L.: Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen. Mater. Chem. Phys. 129(3), 769–776 (2011)CrossRefGoogle Scholar
  41. 41.
    Hofko, B.; Alavi, M.Z.; Grothe, H.; Jones, D.; Harvey, J.: Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater. Struct. 50(3), 187 (2017)CrossRefGoogle Scholar
  42. 42.
    Wu, S.P.; Pang, L.; Mo, L.T.; Chen, Y.C.; Zhu, G.J.: Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Constr. Build. Mater. 23(2), 1005–1010 (2009)CrossRefGoogle Scholar
  43. 43.
    Gao, Y.; Gu, F.; Zhao, Y.: Thermal oxidative aging characterization of SBS modified asphalt. J. Wuhan Univ. Technol. 28(1), 88 (2013). Materials Science EditionCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Civil Engineering and TransportationSouth China University of TechnologyGuangzhouChina

Personalised recommendations