Skip to main content

Advertisement

Log in

Collocation Method for First Passage Time Problem of Power Systems Subject to Stochastic Excitations

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Large penetration of renewable energies heavily threats the stable and reliable operation of power systems due to their randomness and intermittence characteristics. The first passage time problem is one of the critical issues in reliability assessment of new energy power systems. In this paper, we present and analyze the first passage time problem of power systems with stochastic excitation by collocation method. The power systems with stochastic excitations are modeled by stochastic differential equations. Then, the backward Kolmogorov equations and the generalized Pontryagin equations governing the conditional reliability function and the conditional moments of first passage time, respectively, are established based on the stochastic averaging method. The corresponding initial and boundary conditions are also provided. A numerical collocation method was proposed to solve the equations, and case studies were executed on a single-machine infinite-bus system under Gaussian excitation. Illustrations of the conditional reliability function and probability density functions for some cases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  2. Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; Van Cutsem, T.; Vittal, V.: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19(3), 1387–1401 (2004)

    Article  Google Scholar 

  3. Qiu, J.; Shahidehpour, M.; Schuss, Z.: Effect of small random perturbations on power systems dynamics and its reliability evaluation. IEEE Trans. Power Syst. 4(1), 197–204 (1989)

    Article  Google Scholar 

  4. Akhmatov, V.; Knudsen, H.: An aggregate model of a grid-connected, large-scale, offshore wind farm for power stability investigations–importance of windmill mechanical system. Int. J. Electr. Power Energy Syst. 24, 709–717 (2002)

    Article  Google Scholar 

  5. Wang, C.; Shi, L.B.; Yao, L.Z.; Wang, L.M.; Ni, Y.X.; Bazargan, M.: Modeling analysis in power system small signal stability considering uncertainty of wind generation. In: Proc. IEEE PES General Meeting, pp. 1–7 (2010)

  6. Ghaffari, A.; Krstic, M.; Seshagiri, S.: Extremum seeking for wind and solar energy applications. Focus Dyn. Syst. Control 2, 13–21 (2014)

    Google Scholar 

  7. Zárate-Minano, R.; Anghel, M.; Milano, F.: Continuous wind speed models based on stochastic differential equations. Appl. Energy 104, 42–49 (2013)

    Article  Google Scholar 

  8. Li, G.; Yue, H.; Zhou, M.; Wei, J.: Probabilistic assessment of oscillatory stability margin of power systems incorporating wind farms. Int. J. Electr. Power Energy Syst. 58, 47–56 (2014)

    Article  Google Scholar 

  9. Parinya, P.; Sangswang, A.; Kirtikara, K.; Chenvidhya, D.; Naetiladdanon, S.; Limsakul, C.: A study of effects of stochastic wind power and load to power system stability using stochastic stability analysis method. Adv. Mater. Res. 931–932, 878–882 (2014)

    Article  Google Scholar 

  10. Yuan, B.; Zhou, M.; Li, G.Y.; Zhang, X.P.: Stochastic small-signal stability of power systems with wind power generation. IEEE Trans. Power Syst. 30(4), 1680–1689 (2015)

    Article  Google Scholar 

  11. Vergejo, H.; Kliemann, W.; Vargas, L.: Application of linear stability via Lyapunov exponents in high dimensional electrical power systems. Int. J. Electr. Power Energy Syst. 64, 1141–1146 (2015)

    Article  Google Scholar 

  12. Odun-Ayo, T.; Crow, M.: Structure-preserved power system transient stability using stochastic energy functions. IEEE Trans. Power Syst. 27(3), 1450–1458 (2012)

    Article  Google Scholar 

  13. Dhople, S.V.; Chen, Y.C.; Deville, L.; Dominguez-Garcia, A.D.: Analysis of power system dynamics subject to stochastic power injections. IEEE Trans. Circuits Syst. I Regul. Pap. 60(12), 3341–3353 (2013)

    Article  MathSciNet  Google Scholar 

  14. Milano, F.; Zárate-Miñano, R.: A systematic method to model power systems as stochastic differential algebraic equations. IEEE Trans. Power Syst. 28(4), 4537–4544 (2013)

    Article  Google Scholar 

  15. Zhang, J.; Ju, P.; Yu, Y.; Wu, F.: Responses and stability of power system under small Gauss type random excitation. Sci. China Technol. Sci. 55(7), 1873–1880 (2012)

    Article  Google Scholar 

  16. Zhou, M.; Yuan, B.; Zhang, X.P.; Li, G.Y.: Stochastic small signal stability analysis of wind power integrated power systems based on stochastic differential equations. Proc. CSEE 34(10), 1575–1582 (2014). (in Chinese)

    Google Scholar 

  17. Vergejo, H.; Vargas, L.; Kliemann, W.: Stability of linear stochastic systems via Lyapunov exponents and applications to power systems. J. Appl. Math. Comput. 218, 1021–1032 (2012)

    MathSciNet  Google Scholar 

  18. Wang, K.; Crow, M.: The Fokker-Planck equation for power system stability probability density function evolution. IEEE Trans. Power Syst. 28(3), 2994–3001 (2013)

    Article  Google Scholar 

  19. Dong, Z.Y.; Zhao, J.H.; Hill, D.: Numerical simulation for stochastic transient stability assessment. IEEE Trans. Power Syst. 27(4), 1741–1749 (2012)

    Article  Google Scholar 

  20. Zhu, W.Q.: Nonlinear stochastic dynamics and control in Hamiltonian formulation. Appl. Mech. Rev. 59(4), 230–248 (2006). https://doi.org/10.1115/1.2193137

    Article  Google Scholar 

  21. Chen, L.C.; Zhu, W.Q.: First passage failure of quasi non-integrable generalized Hamiltonian systems. Arch. Appl. Mech. 80(8), 883–893 (2010)

    Article  MATH  Google Scholar 

  22. Nwankpa, C.; Shahidehpour, M.: A nonlinear stochastic model for small disturbance stability analysis of electric power systems. Int. J. Elect. Power Energy Syst. 13(3), 139–147 (1991)

    Article  Google Scholar 

  23. Nwankpa, C.; Shahidehpour, M.; Schuss, Z.: A stochastic approach to small signal stability analysis. IEEE Trans. Power Syst. 7(3), 1519–1528 (1992)

    Article  Google Scholar 

  24. Khasminskii, R.Z.: On the averaging principle for Itô stochastic differential equations. Kibernetka 3(4), 260–279 (1968). (in Russian)

    Google Scholar 

  25. Burden, R.L.; Faires, J.D.: Numerical Analysis, 7th edn. Brooks/Cole, Pacific Grove (2001)

    MATH  Google Scholar 

  26. Li, R.: Numerical Solutions of Partial Differential Equations. Higher Education Press, Beijing (2005). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqiang Wei.

Additional information

This work was supported in part by National Natural Science Foundation of China (Grant No.51207052), the Major Program of the National Natural Science Foundation of China (Grant No. 51190103), and the Fundamental Research Funds for the Central Universities(Grant No. 2014MS62).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, G. Collocation Method for First Passage Time Problem of Power Systems Subject to Stochastic Excitations. Arab J Sci Eng 44, 2205–2212 (2019). https://doi.org/10.1007/s13369-018-3361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3361-5

Keywords

Navigation