Skip to main content
Log in

A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Control of flow rate in industrial plants is an essential and crucial task, which is usually achieved by pneumatic control valves in industries. Use of these valves often incorporates nonlinear and uncertain dynamics in the control loop on account of its input-output characteristics, which may result in degradation of control loop performance. To address this concern, a robust and improved fractional order parallel control structure (FOPCS) for flow control is proposed in this paper. The proposed FOPCS is an extension of parallel control structure (PCS) with the help of fractional order calculus, to enhance the robustness in the control loop without compromising with control performance. Also, a global optimization technique, backtracking search algorithm was further employed to critically tune the parameters of control structures. This was done in order to obtain an optimized and enhanced performance from the control loop. Extensive runtime studies on a laboratory scale plant, using advanced data acquisition facilities, were carried out to showcase the effectiveness of developed FOPCS. Proposed FOPCS is thoroughly assessed in terms of servo, regulatory and robustness performance. A quantitative comparison of FOPCS with PCS is also made on the basis of integral of absolute error, integral of absolute rate of controller output and their algebraic summation. All the conducted experimental studies suggested that proposed FOPCS was able to address the issues pertaining to uncertain and nonlinear behaviour of pneumatic control valve in the flow control loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, A.; Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)

    Article  Google Scholar 

  2. Ali, A.; Majhi, S.: Integral criteria for optimal tuning of PI/PID controllers for integrating processes. Asian J. Control 13, 328–337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. Control Theory Appl. 148, 180–184 (2001)

    Article  Google Scholar 

  4. Rao, A.S.; Rao, V.S.R.; Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Frankl. Inst. 346, 38–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, D.; Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41, 4807–4822 (2002)

    Article  Google Scholar 

  6. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  7. Karunagaran, G.; Wenjian, C.: The parallel control structure for transparent online tuning. J. Process Control 21(7), 1072–1079 (2011)

    Article  Google Scholar 

  8. Åström, K.J.; Hägglund, T.: The future of PID control. Control Eng. Pract. 9(11), 1163–1175 (2001)

    Article  Google Scholar 

  9. Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Padula, F.; Visioli, A.: Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory Appl. 6, 776–786 (2012)

    Article  MathSciNet  Google Scholar 

  11. Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) - controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yeroglu, C.; Tan, N.: Note on fractional-order proportional-integral-differential controller design. IET Control Theory Appl. 5(17), 1978–1989 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y.; Petras, I.; Xue, D.: Fractional order control- A tutorial. In: American Control Conference, ACC’09, pp. 1397-1411 (2009)

  14. Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans. 52(4), 550–566 (2013)

    Article  Google Scholar 

  15. Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42(22), 8533–8549 (2015)

    Article  Google Scholar 

  16. Dumlu, A.; Erenturk, K.: Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) Control. IEEE Trans. Industr. Electron. 61(7), 3417–3426 (2014)

    Article  Google Scholar 

  17. Sondhi, S.; Hote, Y.V.: Fractional order PID controller for load frequency control. Energy Convers. Manag. 85, 343–353 (2014)

    Article  Google Scholar 

  18. Kumar, V.; Rana, K.P.S.: Comparative study on fractional order PID and PID controllers on noise suppression for manipulator trajectory control. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688, pp. 3–28. Springer, Cham (2017)

  19. Zamani, M.; Karimi-Ghartemani, M.; Sadati, N.; Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)

    Article  Google Scholar 

  20. Beschi, M.; Padula, F.; Visioli, A.: Fractional robust PID control of a solar furnace. Control Eng. Pract. 56, 190–199 (2016)

    Article  Google Scholar 

  21. Roy, P.; Roy, B.K.: Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation. Control Eng. Pract. 48, 119–135 (2016)

    Article  Google Scholar 

  22. Pan, I.; Das, S.; Gupta, A.: Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of controllers with evolutionary algorithms. ISA Trans. 50(4), 557–572 (2011)

    Article  Google Scholar 

  23. Shah, P.; Agashe, S.D.: Design and optimization of fractional PID controller for higher order control system. In: International Conference of IEEE ICART, pp. 588–592 (2013)

  24. Feliu-Batlle, V.; Rivas-Perez, R.; Castillo-Garcia, F.J.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)

    Article  Google Scholar 

  25. Cheng, Y.C.; Hwang, C.: Stabilization of unstable first order time delay systems using fractional order PD controllers. J. Chin. Inst. Eng. 29(2), 241–249 (2006)

    Article  Google Scholar 

  26. Stephanopolous, G.: Chemical Process Control, 1st edn. Prentice Hall of India, Delhi (2008)

    Google Scholar 

  27. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Sheoran, Y.; Kumar, V.; Rana, K.P.S.; Mishra, P.; Kumar, J.; Nair, S.S.: Development of backtracking search optimization algorithm toolkit in LabVIEW\(^{{\rm TM}}\). Proc. Comput. Sci. 57, 241–248 (2015)

    Article  Google Scholar 

  29. Al-Saggaf, U.M.; Mehedi, I.M.; Mansouri, R.; Bettyeb, M.: Rotary flexible joint control by fractional order controllers. Int. J. Control and Autom. Syst. 15, 2561–2569 (2017). https://doi.org/10.1007/s12555-016-0008-8

    Article  Google Scholar 

  30. Liu, H.; Li, S.; Li, G.; Wang, H.: Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. Int. J. Fuzzy Syst. 20(2), 366–379 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, V., Mishra, P. & Deolia, V.K. A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics. Arab J Sci Eng 44, 2597–2611 (2019). https://doi.org/10.1007/s13369-018-3328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3328-6

Keywords

Navigation