Skip to main content
Log in

Real-Time Control of Pressure Plant Using 2DOF Fractional-Order PID Controller

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Control of real-time pressure process is quite challenging due to high nonlinearity and sensitivity. PID controllers being the most employed for industrial applications have the potential for control of such processes. This is due to the PID’s advantages of simple structure, ease of tuning and implementation. However, its performance degrades during set-point change and high external disturbances due to high sensitivity and nonlinearity of the pressure plant. Therefore, this paper proposes the two-degree-of-freedom fractional-order PID (2DOF–FOPID) controller for real-time control of pressure process in both parallel and series configurations. Furthermore, the controller parameters are obtained experimentally using Ziegler–Nichols and closed-loop set-point approaches. The controller has the advantages of improving set-point tracking and disturbance rejection performance through smoother control action over the conventional PID. From the real-time experimental results obtained, the proposed approach outperforms PID, fractional-order PID and 2DOF-PID controllers in terms of overshoot and settling time. Hence, the approach has better set-point tracking ability and disturbance rejection capability. Furthermore, the control action of the approach is less affected by undesired oscillations and derivative kick effect thereby extending the life of actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moradi, H.; Setayesh, H.; Alasty, A.: PID-Fuzzy control of air handling units in the presence of uncertainty. Int. J. Therm. Sci. 109, 123–135 (2016)

    Article  Google Scholar 

  2. Zhang, J.: Design of a new PID controller using predictive functional control optimization for chamber pressure in a coke furnace. ISA Trans. 67, 208–214 (2017)

    Article  Google Scholar 

  3. Kanagaraj, N.; Sivashanmugam, P.; Paramasivam, S.: A fuzzy logic based supervisory hierarchical control scheme for real time pressure control. Int. J. Autom. Comput. 6(1), 88–96 (2009)

    Article  MATH  Google Scholar 

  4. Kanagaraj, N.; Sivashanmugam, P.; Paramasivam, S.: Fuzzy coordinated PI controller: application to the real-time pressure control process. Adv. Fuzzy Syst. 1, 1–9 (2008)

    MATH  Google Scholar 

  5. Zou, H.; Li, H.: Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017)

    Article  Google Scholar 

  6. Shah, P.; Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Article  Google Scholar 

  7. Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43(6), 2687–2701 (2018)

    Article  Google Scholar 

  8. Åström, K.J.; Hägglund, T.: Advanced PID Control. ISA-The Instrumentation Systems and Automation Society (2006)

  9. Alfaro, V.M.; Vilanova, R.: Model-Reference Robust Tuning of PID Controllers. Springer, Berlin (2016)

    Book  Google Scholar 

  10. McMillan, G.K.: Industrial applications of PID control. In: PID Control in the Third Millennium, pp. 415–461. Springer (2012)

  11. Visioli, A.: Practical PID Control. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Vilanova, R.; Visioli, A.: PID Control in the Third Millennium: Lessons Learned and New Approaches. Springer, Berlin (2012)

    Book  Google Scholar 

  13. Li, M.; Zhou, P.; Zhao, Z.; Zhang, J.: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans. 61, 147–154 (2016)

    Article  Google Scholar 

  14. Alfaro, V.M.; Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012)

    Article  Google Scholar 

  15. Padula, F.; Visioli, A.: Set-point weight tuning rules for fractional-order PID controllers. Asian J. Control 15(3), 678–690 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Araki, M.; Taguchi, H.: Two-degree-of-freedom PID controllers. Int. J. Control Autom. Syst. 1(4), 401–411 (2003)

    Google Scholar 

  17. Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A.K.; Fatehi, A.: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: case study in twin rotor helicopter. Mechatronics 31, 222–233 (2015)

    Article  Google Scholar 

  18. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  19. Chen, Y.; Petras, I.; Xue, D.: Fractional order control-a tutorial. In: American Control Conference, 2009. ACC’09., pp. 1397–1411. IEEE (2009)

  20. Bingi, K.; Ibrahim, R.; Karsiti, M.; Hassan, S.: Fractional-order filter design for set-point weighted PID controlled unstable systems. Int. J. Mech. Mechatron. Eng. 17(5), 173–179 (2017)

    Google Scholar 

  21. Sikander, A.; Thakur, P.; Bansal, R.; Rajasekar, S.: A novel technique to design cuckoo search based fopid controller for avr in power systems. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.07.005

  22. Kumar, G.; Arunshankar, J.: Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order pi-d sliding surface. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.10.005

  23. Padula, F.; Visioli, A.: Set-point filter design for a two-degree-of-freedom fractional control system. IEEE/CAA J. Autom. Sin. 3(4), 451–462 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sharma, R.; Gaur, P.; Mittal, A.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  25. Geng, F.; Zhu, X: Research on fractional order two-degrees-of-freedom flight control technology of unmanned air vehicle. In: Computer Science and Information Processing (CSIP), 2012 International Conference on, pp. 807–812. IEEE (2012)

  26. Debbarma, S.; Saikia, L.C.; Sinha, N.: Automatic generation control of multi-area system using two degree of freedom fractional order PID controller: a preliminary study. In: Power and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-Pacific, pp. 1–6. IEEE (2013)

  27. Debbarma, S.; Saikia, L.C.; Sinha, N.; Kar, B.; Datta, A.: Fractional order two degree of freedom control for AGC of an interconnected multi-source power system. In: Industrial Technology (ICIT), 2016 IEEE International Conference on, pp. 505–510. IEEE (2016)

  28. Debbarma, S.; Saikia, L.C.; Sinha, N.: Automatic generation control using two degree of freedom fractional order PID controller. Int. J. Electr. Power Energy Syst. 58, 120–129 (2014)

    Article  Google Scholar 

  29. Dwivedi, P.; Pandey, S.; Junghare, A.: Performance analysis and experimental validation of 2-DOF fractional-order controller for underactuated rotary inverted pendulum. Arab. J. Sci. Eng. 42(12), 5121–5145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ates, A.; Yeroglu, C.: Online tuning of two degrees of freedom fractional order control loops. Balk. J. Electr. Comput. Eng. 1(4), 5–11 (2016)

    Google Scholar 

  31. Pandey, S.; Dwivedi, P.; Junghare, A.: A novel 2-DOF fractional-order PI\(\lambda \)-D\(\mu \) controller with inherent anti-windup capability for a magnetic levitation system. AEU Int. J. Electron. Commun. 79, 158–171 (2017)

    Article  Google Scholar 

  32. Rasouli, H.; Fatehi, A.: Design of set-point weighting PI\(\lambda \)+ D\(\mu \) controller for vertical magnetic flux controller in Damavand tokamak. Rev. Sci. Instrum. 85(12), 123508 (2014)

    Article  Google Scholar 

  33. Pachauri, N.; Singh, V.; Rani, A.: Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process. J. Dyn. Syst. Meas. Control 140(7), 071006 (2018)

    Article  Google Scholar 

  34. Tepljakov, A.; Petlenkov, E.; Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  35. Oustaloup, A.; Melchior, P.; Lanusse, P.; Cois, O.; Dancla, F.: The CRONE toolbox for MATLAB. In: Computer-Aided Control System Design, 2000. CACSD 2000. IEEE International Symposium on, pp. 190–195. IEEE (2000)

  36. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  37. Xue, D.; Chen, Y.; Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. SIAM (2007)

  38. Alfaro, V.M.; Vilanova, R.: Conversion formulae and performance capabilities of two-degree-of-freedom PID control algorithms. In: Emerging Technologies and Factory Automation (ETFA), 2012 IEEE 17th Conference on, pp. 1–6. IEEE (2012)

  39. Tan, K.K.; Wang, Q.G.; Hang, C.C.: Advances in PID Control. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Bingi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingi, K., Ibrahim, R., Karsiti, M.N. et al. Real-Time Control of Pressure Plant Using 2DOF Fractional-Order PID Controller. Arab J Sci Eng 44, 2091–2102 (2019). https://doi.org/10.1007/s13369-018-3317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3317-9

Keywords

Navigation