Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 10, pp 5035–5055 | Cite as

A Review of Corrosion and Protection of Steel in Concrete

  • Arpit Goyal
  • Homayoon Sadeghi Pouya
  • Eshmaiel Ganjian
  • Peter Claisse
Review Article – Civil Engineering

Abstract

Corrosion of reinforcement is one of the major durability challenges which leads to a reduction in the design life of reinforced concrete. Due to an increasing demand for longer service lives of infrastructure (typically 100–120 years) and the high cost involved in building and maintaining it, the repair of concrete structures has become extremely important. This paper discusses mechanism of corrosion in reinforced concrete and its thermodynamic and kinetic behaviour. It also presents and compares different corrosion prevention and protection techniques available and recommended by BS 1504-9:2008, including the use of corrosion inhibitors, alternative reinforcement, steel and concrete coating and electrochemical techniques. It is concluded that the electrochemical techniques are more effective than conventional methods.

Keywords

Reinforcement corrosion Electrochemical techniques Corrosion protection Corrosion inhibitors Alternative reinforcement Coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Popov, B.N.: Corrosion Engineering: Principles and Solved Problems. Elservier, Oxford (2015)Google Scholar
  2. 2.
    Michel, A.; Otieno, M.; Stang, H.; Geiker, M.R.: Propagation of steel corrosion in concrete: experimental and numerical investigations. Cem. Concr. Compos. 70, 171–182 (2016).  https://doi.org/10.1016/j.cemconcomp.2016.04.007 CrossRefGoogle Scholar
  3. 3.
    Razaqpur, A.G.; Isgor, O.B.: Prediction of reinforcement corrosion in concrete structures. Front. Technol. Infrastruct. Eng. Struct. Infrastruct. 4, 45–69 (2009)Google Scholar
  4. 4.
    Cicek, V.: Corrosion Engineering and Cathodic Protection Handbook. Wliey, Hoboken (2017)CrossRefGoogle Scholar
  5. 5.
    Kurdowski, W.: Chloride corrosion in cementitious system. In: Barnes, P., Bensted, J. (eds.) Structure and Performance of Cements, pp. 294–309. Taylor and Francis, London, New York (2008)Google Scholar
  6. 6.
    Berrocal, C.G.; Lundgren, K.; Löfgren, I.: Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art. Cem. Concr. Res. 80, 69–85 (2016).  https://doi.org/10.1016/j.cemconres.2015.10.006 CrossRefGoogle Scholar
  7. 7.
    Ebell, G.; Burkert, A.; Fischer, J.; Lehmann, J.; Müller, T.; Meinel, D.; Paetsch, O.: Investigation of chloride-induced pitting corrosion of steel in concrete with innovative methods. Mater. Corros. 67(6), 583–590 (2016).  https://doi.org/10.1002/maco.201608969 CrossRefGoogle Scholar
  8. 8.
    Neville, A.: Chloride attack of reinforced concrete: an overview. Mater. Struct. 28, 63–70 (1995).  https://doi.org/10.1007/BF02473172 CrossRefGoogle Scholar
  9. 9.
    Broomfield, J.P.: Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 2nd edn. Taylor and Francis, London (2006)Google Scholar
  10. 10.
    Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R.: Corrosion of Steel in Concrete Prevention, Diagnosis, Repair. Wiley, Weinheim (2004)Google Scholar
  11. 11.
    Ahmad, S.: Reinforcement corrosion in concrete structures, its monitoring and service life prediction—a review. Cem. Concr. Compos. 25, 459–471 (2003).  https://doi.org/10.1016/S0958-9465(02)00086-0 CrossRefGoogle Scholar
  12. 12.
    Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø.: Critical chloride content in reinforced concrete—a review. Cem. Concr. Res. 39, 1122–1138 (2009).  https://doi.org/10.1016/j.cemconres.2009.08.006 CrossRefGoogle Scholar
  13. 13.
    British Standards Institution: Products and systems for the protection and repair of concrete structures—definitions, requirements, quality control and evaluation of conformity. BS EN 1504-9 (2008).  https://doi.org/10.1017/CBO9781107415324.004
  14. 14.
    Ann, K.Y.; Song, H.W.: Chloride threshold level for corrosion of steel in concrete. Corros. Sci. 49, 4113–4133 (2007).  https://doi.org/10.1016/j.corsci.2007.05.007 CrossRefGoogle Scholar
  15. 15.
    Alonso, C.; Andrade, C.; Castellote, M.; Castro, P.: Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem. Concr. Res. 30, 1047–1055 (2000).  https://doi.org/10.1016/S0008-8846(00)00265-9 CrossRefGoogle Scholar
  16. 16.
    Figueira, R.B.; Sadovski, A.; Melo, A.P.; Pereira, E.V.: Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: the influence of surface finishing and pH. Constr. Build. Mater. 141, 183–200 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.03.004 CrossRefGoogle Scholar
  17. 17.
    Bamforth, P.: Enhancing reinforced concrete durability: guidance on selecting measures for minimising the risk of corrosion of reinforcement in concrete. Concrete Society Technical Report No. 61 (2004)Google Scholar
  18. 18.
    Nóvoa, X.R.: Electrochemical aspects of the steel-concrete system. A review. J. Solid State Electrochem. 20, 2113–2125 (2016).  https://doi.org/10.1007/s10008-016-3238-z CrossRefGoogle Scholar
  19. 19.
    Aperador, W.; Bautista-Ruiz, J.; Chunga, K.: Determination of the efficiency of cathodic protection applied to alternative concrete subjected to carbonation and chloride attack. Int. J. Electrochem. Sci. 10, 7073–7082 (2015)Google Scholar
  20. 20.
    Poursaee, A.; Contributor, P.: Corrosion of Steel in Concrete Structures. Elservier Science, London (2016)CrossRefGoogle Scholar
  21. 21.
    NACE: Stray-Current-Induced Corrosion in Reinforced and Prestressed Concrete Structures. NACE Intrenational, Houston, pp 1–34 (2010)Google Scholar
  22. 22.
    British Standards Institution: Protection against corrosion by stray current from direct current systems. British Standards Institution (2004)Google Scholar
  23. 23.
    Frankel, G.S.: Fundamentals of corrosion kinetics. In: Hughes, A., Mol, J., Zheludkevich, M., Buchheit, R. (eds.) Active Protective Coatings, pp. 17–32. Springer, Berlin (2016)CrossRefGoogle Scholar
  24. 24.
    Burkan Isgor, O.: Modeling corrosion of steel in concrete. Corros. Steel Concr. Struct. (2016).  https://doi.org/10.1016/B978-1-78242-381-2.00013-4 Google Scholar
  25. 25.
    Glass, G.K.; Buenfeld, N.R.: Chloride-induced corrosion of steel in concrete. Prog. Struct. Eng. Mater. 2, 448–458 (2000).  https://doi.org/10.1002/pse.54 CrossRefGoogle Scholar
  26. 26.
    Huang, J.; Wang, A.: Effective chloride removal in reinforced concrete using electrochemical method in the presence of calcium nitrite. Int. J. Electrochem. Sci. 11, 4667–4674 (2016).  https://doi.org/10.20964/2016.06.53 CrossRefGoogle Scholar
  27. 27.
    Geiker, M.R.; Polder, R.B.: Experimental support for new electro active repair method for reinforced concrete. Mater. Corros. 67, 600–606 (2016).  https://doi.org/10.1002/maco.201608942 CrossRefGoogle Scholar
  28. 28.
    Redaelli, E.; Bertolini, L.: Electrochemical repair techniques in carbonated concrete. Part I: Electrochemical realkalisation. J. Appl. Electrochem. 41, 817–827 (2011).  https://doi.org/10.1007/s10800-011-0301-4 CrossRefGoogle Scholar
  29. 29.
    Elsener, B.; Angst, U.: Mechanism of electrochemical chloride removal. Corros. Sci. 49, 4504–4522 (2007).  https://doi.org/10.1016/j.corsci.2007.05.019 CrossRefGoogle Scholar
  30. 30.
    Polder, R.B.; Peelen, W.H.A.; Stoop, B.T.J.; Neeft, E.A.C.: Early stage beneficial effects of cathodic protection in concrete structures. Mater. Corros. 62, 105–110 (2011).  https://doi.org/10.1002/maco.201005803 CrossRefGoogle Scholar
  31. 31.
    Broomfield, J.: Anode selection for protection of reinforced concrete structures. Mater. Perform. 46, 26–30 (2007)Google Scholar
  32. 32.
    Drewett, J.; Broomfield, J.: An introduction to electrochemical rehabilitation techniques. Technical Note 2. CPA Technical Note (2011)Google Scholar
  33. 33.
    Raja, P.B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M.C.; Kakooei, S.; Rahim, A.A.: Reviews on corrosion inhibitors: a short view. Chem. Eng. Commun. 203, 1145–1156 (2016).  https://doi.org/10.1080/00986445.2016.1172485 CrossRefGoogle Scholar
  34. 34.
    Atkins, C.; Merola, R.; Foster, A.: Corrosion inhibitors. CPA Technical Note 16, pp. 13–15 (2010)Google Scholar
  35. 35.
    Söylev, T.A.; Richardson, M.G.: Corrosion inhibitors for steel in concrete: state-of-the-art report. Constr. Build. Mater. 22, 609–622 (2008).  https://doi.org/10.1016/j.conbuildmat.2006.10.013 CrossRefGoogle Scholar
  36. 36.
    ACI Committee 222: Protection of metals in concrete against corrosion. ACI 222R-01, pp. 1–41 (2001)Google Scholar
  37. 37.
    Lee, H.-S.; Saraswathy, V.; Kwon, S.-J.; Karthick, S.: Corrosion inhibitors for reinforced concrete: a review. In: Corrosion Inhibitors, Principles and Recent Applications (2018).  https://doi.org/10.5772/intechopen.72572
  38. 38.
    Shen, M.; Hansen, A.: Protecting concrete reinforcement using admixtures with migratory corrosion inhibitors and water repellent component. NACE Corros. 4250, 1–7 (2014)Google Scholar
  39. 39.
    Malik, A.U.; Andijani, I.; Al-Moaili, F.; Ozair, G.: Studies on the performance of migratory corrosion inhibitors in protection of rebar concrete in Gulf seawater environment. Cem. Concr. Compos. 26, 235–242 (2004).  https://doi.org/10.1016/S0958-9465(03)00042-8 CrossRefGoogle Scholar
  40. 40.
    Bavarian, B.; Reiner, L.; Kim, C.Y.: Corrosion Protection of Steel Rebar in Concrete by Migrating Corrosion Inhibitors. NACE International, Corrosion 2003, pp. 1–10 (2003)Google Scholar
  41. 41.
    Pei, X.; Noël, M.; Green, M.; Fam, A.; Shier, G.: Cementitious coatings for improved corrosion resistance of steel reinforcement. Surf. Coat. Technol. 315, 188–195 (2017).  https://doi.org/10.1016/j.surfcoat.2017.02.036 CrossRefGoogle Scholar
  42. 42.
    Gece, G.: Drugs: a review of promising novel corrosion inhibitors. Corros. Sci. 53, 3873–3898 (2011).  https://doi.org/10.1016/j.corsci.2011.08.006 CrossRefGoogle Scholar
  43. 43.
    Raja, P.B.; Sethuraman, M.G.: Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater. Lett. 62, 113–116 (2008).  https://doi.org/10.1016/j.matlet.2007.04.079 CrossRefGoogle Scholar
  44. 44.
    Etteyeb, N.; Nóvoa, X.R.: Inhibition effect of some trees cultivated in arid regions against the corrosion of steel reinforcement in alkaline chloride solution. Corros. Sci. (2016).  https://doi.org/10.1016/j.corsci.2016.07.016 Google Scholar
  45. 45.
    The Concrete Society: Guidance on the use of stainless steel reinforcement. Concrete Society, TR 51 (1998)Google Scholar
  46. 46.
    Moser, R.D.; Singh, P.M.; Kahn, L.F.; Kurtis, K.E.: Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corros. Sci. 57, 241–253 (2012).  https://doi.org/10.1016/j.corsci.2011.12.012 CrossRefGoogle Scholar
  47. 47.
    Serdar, M.; Žulj, L.V.; Bjegović, D.: Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros. Sci. 69, 149–157 (2013).  https://doi.org/10.1016/j.corsci.2012.11.035 CrossRefGoogle Scholar
  48. 48.
    Qian, S.; Qu, D.; Coates, G.: Galvanic coupling between carbon steel and stainless steel reinforcements. Can. Metall. Q. 45, 475–483 (2006).  https://doi.org/10.1179/cmq.2006.45.4.475 CrossRefGoogle Scholar
  49. 49.
    British Standards Institution: Cathodic protection of submarine pipelines by galvanic anodes. BS EN 12474 (2001)Google Scholar
  50. 50.
    ACI Committee 440: Report on fiber-reinforced polymer (FRP) reinforcement for concrete structures. ACI Committee 440. 440R (2007)Google Scholar
  51. 51.
    Waldron, P.; Byars, E.A.; Dejke, V.: Durability of FRP in concrete a state of the art. In: Composites in Construction: A Reality, pp. 92–101. ASCE, Capri, Italy (2001)Google Scholar
  52. 52.
    Suh, K.; Mullins, G.; Sen, R.; Winters, D.: Effectiveness of fiber-reinforced polymer in reducing corrosion in marine environment. ACI Struct. J. 104, 76–83 (2007)Google Scholar
  53. 53.
    ACI Committee 440: Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. ACI Committee 440. 440.2R (2008)Google Scholar
  54. 54.
    Wu, G.; Dong, Z.-Q.; Wang, X.; Zhu, Y.; Wu, Z.-S.: Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions. J. Compos. Constr. (2014).  https://doi.org/10.1061/(ASCE)CC.1943-5614.0000517 Google Scholar
  55. 55.
    Kumar, V.: Protection of steel reinforcement for concrete—a review. Corros. Rev. 16, 317–358 (1998)CrossRefGoogle Scholar
  56. 56.
    Revie, R.W.; Uhlig, H.H.: Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. Wliey, Hoboken (2008)CrossRefGoogle Scholar
  57. 57.
    Pugazhenthy, L.: Galvanized rebars in RCC structures—economic & technical advantages. In: CORCON, pp. 16–19 (2016)Google Scholar
  58. 58.
    Bellezze, T.; Timofeeva, D.; Giuliani, G.; Roventi, G.: Effect of soluble inhibitors on the corrosion behaviour of galvanized steel in fresh concrete. Cem. Concr. Res. 107, 1–10 (2018).  https://doi.org/10.1016/j.cemconres.2018.02.008 CrossRefGoogle Scholar
  59. 59.
    Yehia, S.; Host, J.: Conductive concrete for cathodic protection of bridge decks. ACI Mater. J. 107, 577–585 (2010)Google Scholar
  60. 60.
    Mohammed, H.S.; Knight, G.M.S.: Influence of coating damage on performance of coated rebars under accelerated corrosion conditions. In: CORCON (2016)Google Scholar
  61. 61.
    Pour-Ali, S.; Dehghanian, C.; Kosari, A.: Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating. Corros. Sci. 90, 239–247 (2015).  https://doi.org/10.1016/j.corsci.2014.10.015 CrossRefGoogle Scholar
  62. 62.
    Lambert, P.; MacDonald, M.: Coating concrete. CPA Technical Note 18 (2010)Google Scholar
  63. 63.
    Jiesheng, L.; Xiaoqiang, G.; Faping, L.; Xiang, H.; Rongtang, Z.: The Science Behind It: Effects of Silane Additives on Corrosion Resistance and Durability of Mortar. Material Performance. http://www.materialsperformance.com/articles/coating-linings/2018/04/the-science-behindit-effects-of-silane-additives-on-corrosion-resistance-and-durability-of-mortar (2018). Accessed 10 Apr 2018
  64. 64.
    Pan, X.; Shi, Z.; Shi, C.; Ling, T.C.; Li, N.: A review on concrete surface treatment. Part I: Types and mechanisms. Constr. Build. Mater. 132, 578–590 (2017).  https://doi.org/10.1016/j.conbuildmat.2016.12.025 CrossRefGoogle Scholar
  65. 65.
    Goyal, A.; Ganjian, E.; Pouya, H.S.: Bond strength behaviour of zinc rich paint coating on concrete surface. In: Young Researchers’ Forum IV Innovation in Construction Materials, Newcastle, pp. 21–25 (2018)Google Scholar
  66. 66.
    Byrne, A.; Holmes, N.; Norton, B.: State-of-the-art review of cathodic protection for reinforced concrete structures. Mag. Concr. Res. 68, 1–14 (2016).  https://doi.org/10.1680/jmacr.15.00083 CrossRefGoogle Scholar
  67. 67.
    Pedeferri, P.: Cathodic protection and cathodic prevention. Constr. Build. Mater. 10, 391–402 (1996).  https://doi.org/10.1016/0950-0618(95)00017-8 CrossRefGoogle Scholar
  68. 68.
    US Federal Highway Administration: Long-term effectiveness of cathodic protection systems on highway structures. Publication No. FHWA-RD-01-096, FHWA (2001)Google Scholar
  69. 69.
    Bertolini, L.; Bolzoni, F.; Pedeferri, P.; Lazzari, L.; Pastore, T.: Cathodic protection and cathodic prevention in concrete: principles and applications. J. Appl. Electrochem. 28, 1321–1331 (1998)CrossRefGoogle Scholar
  70. 70.
    Preston, J.: Cathodic protection for new structures. Technical note 23Google Scholar
  71. 71.
    Darowicki, K.; Orlikowski, J.; Cebulski, S.; Krakowiak, S.: Conducting coatings as anodes in cathodic protection. Prog. Org. Coat. 46, 191–196 (2003).  https://doi.org/10.1016/S0300-9440(03)00003-1 CrossRefGoogle Scholar
  72. 72.
    NACE International: Sacrificial cathodic protection of reinforcing steel in atmospherically exposed concrete structures. NACE. SP0216 (2016)Google Scholar
  73. 73.
    Lasa, I.R.; Islam, M.; Duncan, M.: Galvanic cathodic protection for high resistance concrete in marine environments. In: CORROSION 2017, pp. 1–13 (2017)Google Scholar
  74. 74.
    Nikolakakos, S.: Cathodic protection system design for steel pilings of a wharf structure reference. In: Proceedings—American Society for Testing Materials (1999)Google Scholar
  75. 75.
    BS7361-1: Cathodic protection. Part 1: Code of practice for land and marine applications. British Standards (1991).  https://doi.org/10.4028/www.scientific.net/KEM.35-36.301
  76. 76.
    Leng, D.L.: Cathodic protection on steel reinforced concrete marine structures. NACE International, Corrosion 2017, pp. 3–4 (2017)Google Scholar
  77. 77.
    Parthiban, G.T.; Parthiban, T.; Ravi, R.; Saraswathy, V.; Palaniswamy, N.; Sivan, V.: Cathodic protection of steel in concrete using magnesium alloy anode. Corros. Sci. (2008).  https://doi.org/10.1016/j.corsci.2008.08.040 Google Scholar
  78. 78.
    Wilson, K.; Jawed, M.; Ngala, V.: The selection and use of cathodic protection systems for the repair of reinforced concrete structures. Constr. Build. Mater. 39, 19–25 (2013)CrossRefGoogle Scholar
  79. 79.
    The Concrete Society: Cathodic protection of stee concrete (2011)Google Scholar
  80. 80.
    Koleva, D.A.; de Wit, J.H.W.; van Breugel, K.; Lodhi, Z.F.; Ye, G.: Investigation of corrosion and cathodic protection in reinforced concrete. J. Electrochem. Soc. 154, C261 (2007).  https://doi.org/10.1149/1.2715313 CrossRefGoogle Scholar
  81. 81.
    NACE: Impressed current cathodic protection of reinforcing steel in atmospherically exposed concrete structures. NACE International, SP0290 (2007)Google Scholar
  82. 82.
    Polder, R.B.; Worm, D.; Courage, W.; Leegwater, G.: Performance and working life of cathodic protection systems for concrete structures. In: Grantham, M.; Mechtcherine, V.; Schneck, U. (Eds.) Concrete Solutions, 4th International Conference on Concrete Repair, pp. 157–162. CRC Press, Dresden, Germany (2011)Google Scholar
  83. 83.
    The Concrete Society: Cathodic protection of steel in concrete—appendices. The Concrete Society (2011)Google Scholar
  84. 84.
    Glass, G.K.; Roberts, A.C.; Davison, N.: Hybrid corrosion protection of chloride-contaminated concrete. In: Proceedings of ICE–Construction and Materials, vol. 161, 163–172 (2008).  https://doi.org/10.1680/coma.2008.161.4.163
  85. 85.
    Broomfield, J.P.: Electrochemical Realkalisation of Steel Reinforced Concrete - A State of the Art Report. Corrosion Prevention Association (CPA), Technical Note 9 (2016)Google Scholar
  86. 86.
    Marques, P.F.; Costa, A.: Service life of RC structures: carbonation induced corrosion. Prescriptive vs. performance-based methodologies. Constr. Build. Mater. 24, 258–265 (2010).  https://doi.org/10.1016/j.conbuildmat.2009.08.039 CrossRefGoogle Scholar
  87. 87.
    British Standards Institution: Electrochemical realkalization and chloride extraction treatments for reinforced concrete. BS EN 14038-1 (2016)Google Scholar
  88. 88.
    NACE: Electrochemical realkalization and chloride extraction for reinforced concrete. NACE International, SP0107, pp. 1–24 (2017)Google Scholar
  89. 89.
    Ribeiro, P.H.L.C.; Meira, G.R.; Ferreira, P.R.R.; Perazzo, N.: Electrochemical realkalisation of carbonated concretes—influence of material characteristics and thickness of concrete reinforcement cover. Constr. Build. Mater. 40, 280–290 (2013).  https://doi.org/10.1016/j.conbuildmat.2012.09.076 CrossRefGoogle Scholar
  90. 90.
    Yeih, W.; Chang, J.J.: A study on the efficiency of electrochemical realkalisation of carbonated concrete. Constr. Build. Mater. 19, 516–524 (2005).  https://doi.org/10.1016/j.conbuildmat.2005.01.006 CrossRefGoogle Scholar
  91. 91.
    British Standards Institution: Electrochemical realkalization and chloride extraction treatments for reinforced concrete. Part 2: Chloride extraction. BS EN 14038-2 (2011)Google Scholar
  92. 92.
    Sánchez, M.; Alonso, M.C.: Electrochemical chloride removal in reinforced concrete structures: improvement of effectiveness by simultaneous migration of calcium nitrite. Constr. Build. Mater. 25, 873–878 (2011).  https://doi.org/10.1016/j.conbuildmat.2010.06.099 CrossRefGoogle Scholar
  93. 93.
    Broomfield, J.P.: The principles and practice of galvanic cathodic protection for reinforced concrete structures. Technical Note 6. CPA Technical Note (2007)Google Scholar
  94. 94.
    Martínez, I.; Andrade, C.; Castellote, M.; de Viedma, G.P.: Advancements in non-destructive control of efficiency of electrochemical repair techniques. Corros. Eng. Sci. Technol. 44, 108–118 (2009).  https://doi.org/10.1179/174327808X286266 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Centre of Built and Natural EnvironmentCoventry UniversityCoventryUK
  2. 2.School of Energy, Construction and Environment, Sir John Laing BuildingCoventry UniversityCoventryUK
  3. 3.Built and Natural Environment Research Centre, School of Energy, Construction and EnvironmentCoventry UniversityCoventryUK

Personalised recommendations