Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 10, pp 5667–5675 | Cite as

Material Damage Evolution for Plain and Steel-Fiber-Reinforced Concrete Under Unconfined Compression Loading by Dynamic Ultrasonic Tests

  • José Alfredo León Ramírez
  • Lizarazo-Marriaga Juan
  • Julian Carrillo
Research Article - Civil Engineering
  • 24 Downloads

Abstract

This paper summarizes the results of a research aimed at assessing the damage of plain and steel-fiber-reinforced concrete when using ultrasonic compression and shear wave velocities. The ultrasonic waves and the axial compression loading were oriented to the same direction in order to track the damage progress during several loading steps. The concrete damage was monitored based on the evolution of the dynamic mechanical properties. The experimental program included 18 cylindrical specimens from six different mixtures that were cast by using 0, 0.3 and 0.5% fiber volume contents. Quantitative models were established linking the axial loads, the wave velocities, the dynamic Young’s and shear moduli, the Poisson’s ratio and a damage index.

Keywords

Steel-fiber-reinforced concrete Ultrasonic pulse Damage model Compression loading Dynamic properties Damage index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Universidad Nacional de Colombia—Bogotá through the Project DIB–23639. The third author expresses his gratitude to the Universidad Militar Nueva Granada (UMNG, Colombia) for granting research scholarships.

References

  1. 1.
    Malhotra, V.M.; Carino, N.J.: Handbook on Nondestructive Testing of Concrete. CRC Press, Florida (2004)Google Scholar
  2. 2.
    Elnashai, A.S.; Di Sarno, L.: Fundamentals of Earthquake Engineering. Wiley, Chichester (2008)CrossRefGoogle Scholar
  3. 3.
    Bungey, J.H.; Millard, S.G.: Testing of Concrete in Structures. Spon Press, London (1996)Google Scholar
  4. 4.
    ASTM C597-02: Standard Test Method for Pulse Velocity Trough Concrete, Annu. B. ASTM Stand (2002)Google Scholar
  5. 5.
    Lemaitre, J.; Chaboche, J.L.: Elements of the Physical Mechanisms of Deformation and Fracture. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ohtsu, M.; Watanabe, H.: Quantitative damage estimation of concrete by acoustic emission. Constr. Build. Mater. 15, 217–224 (2001)CrossRefGoogle Scholar
  7. 7.
    Behnia, A.; Chai, H.K.; Shiotani, T.: Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 65, 282–302 (2014)CrossRefGoogle Scholar
  8. 8.
    Dai, Q.; Ng, K.; Zhou, J.; Kreiger, E.L.; Ahlborn, T.M.: Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques. Constr. Build. Mater. 31, 231–242 (2012)CrossRefGoogle Scholar
  9. 9.
    Suzuki, T.; Ohtsu, M.: Quantitative damage evaluation of structural concrete by a compression test based on AE rate process analysis. Constr. Build. Mater. 18, 197–202 (2004)CrossRefGoogle Scholar
  10. 10.
    Shah, S.G.; Chandra Kishen, J.M.: Fracture behavior of concrete-concrete interface using acoustic emission technique. Eng. Fract. Mech. 77, 908–924 (2010)CrossRefGoogle Scholar
  11. 11.
    Regnault, P.; Brühwiler, E.: Holographic interferometry for the determination of fracture process zone in concrete. Eng. Fract. Mech. 35, 29–38 (1990)CrossRefGoogle Scholar
  12. 12.
    Schurr, D.P.; Kim, J.Y.; Sabra, K.G.; Jacobs, L.J.: Damage detection in concrete using coda wave interferometry. NDT E Int. 44, 728–735 (2011)CrossRefGoogle Scholar
  13. 13.
    Moradi-Marani, F.; Rivard, P.; Lamarche, C.P.; Kodjo, S.A.: Evaluating the damage in reinforced concrete slabs under bending test with the energy of ultrasonic waves. Constr. Build. Mater. 73, 663–673 (2014)CrossRefGoogle Scholar
  14. 14.
    Wolf, J.; Pirskawetz, S.; Zang, A.: Detection of crack propagation in concrete with embedded ultrasonic sensors. Eng. Fract. Mech. 146, 161–171 (2015)CrossRefGoogle Scholar
  15. 15.
    Shah, A.A.; Ribakov, Y.; Zhang, C.: Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro and macro-scale defects in concrete. Mater. Des. 50, 905–916 (2013)CrossRefGoogle Scholar
  16. 16.
    Antonaci, P.; Bruno, C.L.E.; Bocca, P.G.; Scalerandi, M.; Gliozzi, A.S.: Nonlinear ultrasonic evaluation of load effects on discontinuities in concrete. Cem. Concr. Res. 40, 340–346 (2010).  https://doi.org/10.1016/j.cemconres.2009.09.014 CrossRefGoogle Scholar
  17. 17.
    Shokouhi, P.; Zoëga, A.; Wiggenhauser, H.; Fischer, G.; Zoëga, A.; Wiggenhauser, H.: Surface wave velocity–stress relationship in uniaxially loaded concrete. ACI Mater. J. 109, 141–148 (2012)Google Scholar
  18. 18.
    Qasrawi, H.Y.; Marie, I.A.: The use of USPV to anticipate failure in concrete under compression. Cem. Concr. Res. 33, 2017–2021 (2003)CrossRefGoogle Scholar
  19. 19.
    Nogueira, C.L.; Willam, K.J.: Ultrasonic testing of damage in concrete under uniaxial compression. ACI Mater. J. 98, 265–275 (2001)Google Scholar
  20. 20.
    Sukontasukkul, P.; Hongthong, P.; Songpiriyakij, S.: Accessing damage of plain and fiber reinforced concrete under loading using variations of ultrasonic pulse velocity. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference (2010)Google Scholar
  21. 21.
    Antonaci, P.; Bruno, C.L.E.; Gliozzi, A.S.; Scalerandi, M.: Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 40, 1106–1113 (2010)CrossRefGoogle Scholar
  22. 22.
    Lillamand, I.; Chaix, J.F.; Ploix, M.A.; Garnier, V.: Acoustoelastic effect in concrete material under uni-axial compressive loading. NDT E Int. 43, 655–660 (2010)CrossRefGoogle Scholar
  23. 23.
    Bompan, K.F.; Haach, V.G.: Ultrasonic tests in the evaluation of the stress level in concrete prisms based on the acoustoelasticity. Constr. Build. Mater. 162, 740–750 (2018)CrossRefGoogle Scholar
  24. 24.
    Santhanam, M.: Ultrasonic characterization of damage in concrete. Tech. Sci. Press 3(2), 111–25 (2010)Google Scholar
  25. 25.
    Vesey, V.; Konecny, P.; Lehner, P.: Influence of crack propagation on electrical resistivity and ultrasonic characteristics of normal concrete assessed by sequential TPB fracture test. Theor. Appl. Fract. Mech. 80, 2–13 (2015)CrossRefGoogle Scholar
  26. 26.
    Landis, E.N.; Baillon, L.: Experiments to relate acoustic emission energy to fracture energy of concrete. J. Eng. Mech. 126(6), 698–702 (2002)CrossRefGoogle Scholar
  27. 27.
    Unger, D.J.: Analytical Fracture Mechanics. Acad. Press, Washington (1995)Google Scholar
  28. 28.
    Janssen, M.; Zuidema, J.; Wanhill, R.J.H.: Fracture Mechanics. Spon Press, New York (2004)Google Scholar
  29. 29.
    Rabotnov, Y.N.: Creep Problems in Structural Members. Wiley, New York (1969)zbMATHGoogle Scholar
  30. 30.
    ASTM D2845-08, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock. Annu. B. ASTM Stand (2008)Google Scholar
  31. 31.
    EFNARC: European specification for sprayed concrete (1996)Google Scholar
  32. 32.
    ASTM C78-18, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). Annu. B. ASTM Stand (2018)Google Scholar
  33. 33.
    ASTM C469-10, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, Annu. B. ASTM Stand (2010)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • José Alfredo León Ramírez
    • 1
  • Lizarazo-Marriaga Juan
    • 1
  • Julian Carrillo
    • 2
  1. 1.Department of Civil and Agricultural EngineeringUniversidad NacionalBogotáColombia
  2. 2.Department of Civil EngineeringNueva Granada Military UniversityBogotáColombia

Personalised recommendations