Skip to main content
Log in

Microstructure and Mechanical Properties of \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) High Entropy Alloys

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The microstructures, phase composition, and mechanical properties of the \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) (x: molar ratio, \({x} = 0,~0.1,~0.2\), and 0.3) high entropy alloys were investigated. Only BCC phase and FCC phase were found in \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) alloys. Thereinto, the \(\hbox {CoCrFeNi}_{2}\hbox {Al}\) alloy was comprised of the primary phase with BCC structure and the eutectic structures with BCC and FCC phases. The \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.9}\hbox {W}_{0.1}\), \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.8}\hbox {W}_{0.2}\), and \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.7}\hbox {W}_{0.3}\) alloys were comprised of the primary phase with FCC structure and the eutectic structures with BCC and FCC phases. The main effect of Al element on \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) alloys was tailoring the proportion of BCC phase and FCC phase, while W element played a greater role than Al element in the solid solution strengthening effect. Hence, the mechanical properties of \(\hbox {AlCoCrFeNi}_{2}\) alloy can be tailored by adjusting the concentration of Al and W elements to obtain a wider range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y.: Nanostructured high-entropy alloys with multi-principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  Google Scholar 

  2. Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Article  Google Scholar 

  3. Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; Ruan, H.H.; Li, T.J.: A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014)

    Article  Google Scholar 

  4. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O.: A fracture-resistent high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014)

    Article  Google Scholar 

  5. Lu, Y.P.; Gao, X.Z.; Jiang, L.; Chen, Z.N.; Wang, T.M.; Jie, J.C.; Kang, H.J.; Zhang, Y.B.; Guo, S.; Ruan, H.H.; Zhao, Y.H.; Cao, Z.Q.; Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143–150 (2017)

    Article  Google Scholar 

  6. Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W.: Microstructure and wear behavior of \(Al_{{\rm x}}\text{ Co }_{1.5}\text{ CrFeNi }_{1.5}\text{ Ti }_{{\rm y}}\) high-entropy alloys. Acta Mater. 59, 6308–6317 (2011)

    Article  Google Scholar 

  7. Hemphill, M.A.; Yuan, T.; Wang, G.Y.; Yeh, J.W.; Tsai, C.W.; Chuang, A.; Liaw, P.K.: Fatigue behavior of \(\text{ Al }_{0.5}\text{ CoCrCuFeNi }\) high entropy alloys. Acta Mater. 60, 5723–5734 (2012)

    Article  Google Scholar 

  8. Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K.: Fatigue behavior of a wrought \(\text{ Al }_{0.5}\text{ CoCrCuFeNi }\) two-phase high-entropy alloy. Acta Mater. 99, 247–258 (2015)

    Article  Google Scholar 

  9. Kozelj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jaglicic, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinsek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014)

    Article  Google Scholar 

  10. Zhang, Y.; Zuo, T.T.; Cheng, Y.Q.; Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013)

    Article  Google Scholar 

  11. Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  Google Scholar 

  12. He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105–113 (2014)

    Article  Google Scholar 

  13. Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 17981 (2016)

    Google Scholar 

  14. Liu, W.H.; Lu, Z.P.; He, J.Y.; Luan, J.H.; Wang, Z.J.; Liu, B.; Liu, Y.; Chen, M.W.; Liu, C.T.: Ductile \(\text{ CoCrFeNiMo }_{{\rm x}}\) high entropy alloys strengthening by hard intermetallic phases. Acta Mater. 116, 332–342 (2016)

    Article  Google Scholar 

  15. Chen, Q.S.; Zhou, K.Y.; Jiang, L.; Lu, Y.P.; Li, T.J.: Effects of Fe content on microstructures and properties of \(\text{ AlCoCrFe }_{{\rm x}}\text{ Ni }\) High-entropy alloys. Arab. J. Sci. Eng. 40, 3657–3663 (2015)

    Article  Google Scholar 

  16. He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016)

    Article  Google Scholar 

  17. Kao, Y.F.; Chen, T.J.; Chen, S.K.; Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed \(\text{ Al }_{{\rm x}}\text{ CoCrFeNi }\) \((0\le \text{ x }\le 2)\) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009)

    Article  Google Scholar 

  18. Borkar, T.; Gwalani, B.; Choudhuri, D.; Mikler, C.V.; Yannetta, C.J.; Chen, X.; Ramanujan, R.V.; Styles, M.J.; Gibson, M.A.; Banerjee, R.: A combination assessment of \(\text{ Al }_{{\rm x}}\text{ CrCuFeNi }_{2}\) \((0\,<\, \text{ x }\,>\,1.5)\) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)

    Article  Google Scholar 

  19. Guo, J.T.: Materials Science and Engineering for Superalloys. www.sciencep.com, China (2008)

  20. Dong, Y.; Zhou, K.Y.; Lu, Y.P.; Gao, X.X.; Wang, T.M.; Li, T.J.: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67–72 (2014)

    Article  Google Scholar 

  21. Lu, Y.P.; Dong, Y.; Jiang, L.; Wang, T.M.; Li, T.J.; Zhang, Y.: A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17, 2355–2366 (2015)

    Article  Google Scholar 

  22. Guo, S.; Chun, N.; Lu, J.; Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011)

    Article  Google Scholar 

  23. Singh, A.K.; Kumar, N.; Dwivedi, A.; Subramaniam, A.: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 53, 112–119 (2014)

    Article  Google Scholar 

  24. Takeuchi, A.; Inoue, A.: Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A 304–306, 446–451 (2001)

    Article  Google Scholar 

  25. Dong, Y.; Lu, Y.P.: Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic \(\text{ AlCoCrFeNi }_{2}\) high-entropy alloy. J. Mater. Eng. Perform. 27(1), 109–115 (2018)

    Article  Google Scholar 

  26. Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Oleynik, E.E.; Tortika, A.S.; Senkov, O.N.: Effect of V content on microstructure and mechanical properties of the \(\text{ CoCrFeMnNiV }_{{\rm x}}\) high entropy alloys. J. Alloys Compd. 628, 170–185 (2015)

    Article  Google Scholar 

  27. Salishchev, G.A.; Tikhonovsky, M.A.; Shaysultanov, D.G.; Stepanov, N.D.; Kuznetsov, A.V.; Kolodiy, I.V.; Tortika, A.S.; Senkov, O.N.: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11–21 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Dong or Yiping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lu, Y. Microstructure and Mechanical Properties of \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) High Entropy Alloys. Arab J Sci Eng 44, 803–808 (2019). https://doi.org/10.1007/s13369-018-3297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3297-9

Keywords

Navigation