Skip to main content

Advertisement

Log in

Correlations Between the Sonochemical Production Rate of Hydrogen and the Maximum Temperature and Pressure Reached in Acoustic Bubbles

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Water sonolysis generates hydrogen through acoustic cavitation. In this work, based on a model for a reactive acoustic bubble, correlations between the sonochemical production of hydrogen and the maximum temperature and pressure reached in the bubble at the violent collapse have been made. The computational analysis has been performed for more than 800 points obtained by combining various cavitation parameters, i.e., frequency, acoustic intensity, liquid temperature, and ambient bubble radius. The simulation results showed that hydrogen production rate progressed linearly with the bubble temperature and pressure rise up to plateaus, which begin at 3500 ± 200 K and 100 ± 10 atm. Analyzing the progress of \(\text {H}^{{\cdot }}\) and \(^{{\cdot }} \)OH (\(\text {H}_{2}\) precursors) as function of bubble temperature and pressure showed very similar evolutions as those obtained for \(\text {H}_{2}\) with the same optimums at 3500 ± 200 K and 100 ± 10 atm. Consequently, in addition to the quench of hydrogen formation at very high bubble temperatures through the reaction \(\text {H}_{2}+\,^{{\cdot }}{\hbox {OH}}\rightarrow \text {H}_{2}\hbox {O}+\text {H}^{{\cdot }}\), the existing optimum temperature and pressure for \(\text {H}_{2}\) production may also be due the hard consumption of their precursors (\(^{{\cdot }}\)OH and \(\text {H}^{{\cdot }})\) above 3500 K and 100 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dincer, I.; Acar, C.: Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  Google Scholar 

  2. Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S.: Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 19, 1098–2106 (2005). https://doi.org/10.1021/ef0500538

    Article  Google Scholar 

  3. Dincer, I.: Green methods for hydrogen production. Int. J. Hydrog. Energy 37, 1954–1971 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  Google Scholar 

  4. Dincer, I.; Acar, C.: Innovation in hydrogen production. Int. J. Hydrog. Energy 42, 14843–14864 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.107

    Article  Google Scholar 

  5. Ezzahra Chakik, F.; Kaddami, M.; Mikou, M.: Effect of operating parameters on hydrogen production by electrolysis of water. Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.07.015

    Article  Google Scholar 

  6. Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K.: A review and recent developments in photocatalytic water-splitting using Ti\(\text{ O }_{2}\) for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009

    Article  Google Scholar 

  7. Das, D.; Veziroglu, T.N.: Advances in biological hydrogen production processes. Int. J. Hydrog. Energy 33, 6046–6057 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.098

    Article  Google Scholar 

  8. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Computational engineering study of hydrogen production via ultrasonic cavitation in water. Int. J. Hydrog. Energy 41, 832–844 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.058

    Article  Google Scholar 

  9. Gentili, P.L.; Penconi, M.; Ortica, F.; Cotana, F.; Rossi, F.; Elisei, F.: Synergistic effects in hydrogen production through water sonophotolysis catalyzed by new La\(_{2{\rm x}}\)Ga\(_{2{\rm y}}\)In\(_{2}\)(1\(-\)x\(-\)y)O\(_{3}\) solid solutions. Int. J. Hydrog. Energy 34, 9042–9049 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.027

    Article  Google Scholar 

  10. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Mechanism of the sonochemical production of hydrogen. Int. J. Hydrog. Energy 40, 4056–4064 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.150

    Article  Google Scholar 

  11. Ciawi, E.; Rae, J.; Ashokkumar, M.; Grieser, F.: Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J. Phys. Chem. B 110, 13656–60 (2006). https://doi.org/10.1021/jp061441t

    Article  Google Scholar 

  12. Didenko, Y.T.; McNamara, W.B.; Suslick, K.S.: Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121, 5817–5818 (1999). https://doi.org/10.1021/ja9844635

    Article  Google Scholar 

  13. Flannigan, D.J.; Hopkins, S.D.; Camara, C.G.; Putterman, S.J.; Suslick, K.S.: Measurement of pressure and density inside a single sonoluminescing bubble. Phys. Rev. Lett. 96, 204301 (2006). https://doi.org/10.1103/PhysRevLett.96.204301

    Article  Google Scholar 

  14. Anbar, M.; Pecht, I.: On the sonochemical formation of hydrogen peroxide in water. J. Phys. Chem. 68, 352–355 (1964). https://doi.org/10.1021/j100784a025

    Article  Google Scholar 

  15. Hart, E.J.; Henglein, A.: Sonochemistry of aqueous solutions: \(\text{ H }_{2}\)-\(\text{ O }_{2}\) combustion in cavitation bubbles. J. Phys. Chem. 91, 3654–3656 (1987)

    Article  Google Scholar 

  16. Fischer, C.; Hart, E.; Henglein, A.: Ultrasonic irradiation of water in the presence of \(^{18,18} \text{ O }_{2}\): isotope exchange and isotopic distribution of \(\text{ H }_{2} \text{ O }_{2}\). J. Phys. Chem. 90, 1954–1956 (1986)

    Article  Google Scholar 

  17. Hart, E.J.; Fischer, C.-H.; Henglein, A.: Isotopic exchange in the sonolysis of aqueous solutions containing nitrogen-14 and nitrogen-15 molecules. J. Phys. Chem. 90, 5989–5991 (1986)

    Article  Google Scholar 

  18. Fischer, C.-H.; Hart, E.J.; Henglein, A.: H/D isotope exchange in the D\(_{2}\)-\(\text{ H }_{2}\)O system under the influence of ultrasound. J. Phys. Chem. 90, 222–224 (1986)

    Article  Google Scholar 

  19. Hart, E.J.; Fischer, C.; Henglein, A.: Pyrolysis of acetylene in conolytic cavitation bubbles in aqueous solution. J. Phys. Chem. 94, 284–290 (1990)

    Article  Google Scholar 

  20. Buettner, J.; Gutierrez, M.; Henglein, A.: Sonolysis of water-methanol mixtures. J. Phys. Chem. 95, 1528–1530 (1991). https://doi.org/10.1021/j100157a004

    Article  Google Scholar 

  21. Yasui, K.; Tuziuti, T.; Iida, Y.; Mitome, H.: Theoretical study of the ambient-pressure dependence of sonochemical reactions. J. Chem. Phys. 119, 346 (2003). https://doi.org/10.1063/1.1576375

    Article  Google Scholar 

  22. Makino, K.; Mossoba, M.M.; Riesz, P.: Chemical effects of ultrasound on aqueous solutions. Evidence for OH an H by spin trapping. J. Am. Chem. Soc. 104, 3537–3539 (1982). https://doi.org/10.1021/ja00376a064

    Article  Google Scholar 

  23. Adewuyi, Y.G.: Sonochemistry: environmental science and engineering applications. Eng. Chem. Res. 40, 4681–4715 (2001). https://doi.org/10.1021/ie010096l

    Article  Google Scholar 

  24. Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M.: Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and \(\text{ H }_{2} \text{ O }_{2}\) production. J. Hazard. Mater. 178, 1007–1014 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.039

    Article  Google Scholar 

  25. Merouani, S.; Hamdaoui, O.: The size of active bubbles for the production of hydrogen in sonochemical reaction field. Ultrason. Sonochem. 32, 320–327 (2016). https://doi.org/10.1016/j.ultsonch.2016.03.026

    Article  Google Scholar 

  26. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrason. Sonochem. 22, 41–50 (2014). https://doi.org/10.1016/j.ultsonch.2014.07.011

    Article  Google Scholar 

  27. Merouani, S.; Ferkous, H.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: A method for predicting the number of active bubbles in sonochemical reactors. Ultrason. Sonochem. 22, 51–58 (2014). https://doi.org/10.1016/j.ultsonch.2014.07.015

    Article  Google Scholar 

  28. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Modeling of ultrasonic cavitation as an advanced technique for water treatment. Desalin. Water Treat. 56, 1–11 (2014). https://doi.org/10.1080/19443994.2014.950994

    Article  Google Scholar 

  29. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters. Ultrasonics 54, 227–232 (2014). https://doi.org/10.1016/j.ultras.2013.04.014

    Article  Google Scholar 

  30. Crum, L.A.: The polytropic exponent of gas contained within air bubbles pulsating in a liquid. J. Acoust. Soc. Am. 73, 116–120 (1983). https://doi.org/10.1121/1.388844

    Article  Google Scholar 

  31. Keller, J.B.; Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628–633 (1980). https://doi.org/10.1121/1.384720

    Article  MATH  Google Scholar 

  32. Colussi, A.J.; Linda, K.; Weavers, A.; Hoffmann, M.R.; Colussi, A.J.; Weavers, L.K.; Hoffmann, M.R.: Chemical bubble dynamics and quantitative sonochemistry. J. Phys. Chem. A 102, 6927–6934 (1998). https://doi.org/10.1021/jp980930t

    Article  Google Scholar 

  33. Yasui, K.: Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold. Ultrasonics 36, 575–580 (1998). https://doi.org/10.1016/S0041-624X(97)00107-8

    Article  Google Scholar 

  34. Storey, B.D.; Szeri, A.J.: A reduced model of cavitation physics for use in sonochemistry. Proc. R. Soc. Lond. A 457, 1685–1700 (2001). https://doi.org/10.1098/rspa.2001.0784A

    Article  Google Scholar 

  35. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem. 21, 53–59 (2014). https://doi.org/10.1016/j.ultsonch.2013.05.008

    Article  Google Scholar 

  36. Yasui, K.; Tuziuti, T.; Sivakumar, M.; Iida, Y.: Theoretical study of single-bubble sonochemistry. J. Chem. Phys. 122, 224706 (2005). https://doi.org/10.1063/1.1925607

    Article  Google Scholar 

  37. Merouani, S.; Hamdaouia, O.; Boutamine, Z.; Rezgui, Y.; Guemini, M.: Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water. Ultrason. Sonochem. 28, 382–392 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.015

    Article  Google Scholar 

  38. Kerboua, K.; Hamdaoui, O.: Numerical estimation of ultrasonic production of hydrogen: effect of ideal and real gas based models. Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2017.07.005

    Article  Google Scholar 

  39. Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Optimum bubble temperature for the production of hydroxyl radical in acoustic cavitation—frequency dependence. Acta Acust. United Acust. 101, 684–689 (2015). https://doi.org/10.3813/AAA.918864

    Article  Google Scholar 

  40. Yasui, K.; Tuziuti, T.; Iida, Y.: Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42, 579–84 (2004). https://doi.org/10.1016/j.ultras.2003.12.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Merouani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merouani, S., Hamdaoui, O. Correlations Between the Sonochemical Production Rate of Hydrogen and the Maximum Temperature and Pressure Reached in Acoustic Bubbles. Arab J Sci Eng 43, 6109–6117 (2018). https://doi.org/10.1007/s13369-018-3266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3266-3

Keywords

Navigation