Hydraulic Characteristics and Reduction Measure for Rooster Tails Behind Spillway Piers

Research Article - Civil Engineering
  • 18 Downloads

Abstract

During flood discharge in a hydraulic project, rooster tails occur downstream of the piers in the spillway and have adverse effects on the operation of the discharge chute. The present paper provides an experimental study of the rooster tail generated by a pier in a chute spillway. Causes of the rooster tail were analyzed, and factors affecting the characteristics of the rooster tail were investigated. The results indicate that rooster tail height is significantly influenced by several parameters, including the spillway slope ratio, pier width and type, and outlet section water depth. A new formula was developed for estimating rooster tail height, and all the experimental data fit well in the selected experimental range. Moreover, a composite sloping-tail pier was designed based on the generation mechanism of the rooster tail. This pier can effectively eliminate rooster tail and has simple construction and lower costs.

Keywords

Rooster tail Spillway Pier Hydraulic characteristics Physical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maki, K.J.; Doctors, L.J.; Beck, R.F.; et al.: Transom-stern flow for high-speed craft. Aust. J. Mech. Eng. 3(2), 191–199 (2006)CrossRefGoogle Scholar
  2. 2.
    Doctors, L.J.: A numerical study of the resistance of transom-stern monohulls. Ship Technol. Res. 54(3), 134–144 (2006)CrossRefGoogle Scholar
  3. 3.
    Ghadimi, P.; Dashtimanesh, A.; Zamanian, R.; et al.: Rooster tail depression by originating a modified transom stern form using a Reynolds averaged Navier Stokes solver. Sci. Iran. Trans. B Mech. Eng. 22(3), 765–777 (2015)Google Scholar
  4. 4.
    Wu, J.H.; Cai, C.G.; Ji, W.; et al.: Experimental study on cavitation and water-wing for middle-piers of discharge tunnels. J. Hydrodyn. Ser. B 17(4), 429–437 (2005)Google Scholar
  5. 5.
    Chen, S.; Zhang, J.; Hu, M.; et al.: Experimental study on water-wing characteristics induced by piers in flood drainage culverts. Sci. Iran. Trans. A Civ. Eng. 20(5), 1320–1326 (2013)Google Scholar
  6. 6.
    Liu, S.H.; Sun, X.F.; Luo, J.: Unified model for splash droplets and suspended mist of atomized flow. J. Hydrodyn. Ser. B 20(1), 125–130 (2008)CrossRefGoogle Scholar
  7. 7.
    Lian, J.J.; Li, C.; Liu, F.; et al.: A prediction method of flood discharge atomization for high dams. J. Hydraul. Res. 52(2), 274–282 (2014)CrossRefGoogle Scholar
  8. 8.
    Rajaratnam, N.: Skimming flow in stepped spillways. J. Hydraul. Eng. ASCE 116(4), 587–591 (1990)CrossRefGoogle Scholar
  9. 9.
    Chanson, H.: Prediction of the transition nappe skimming flow on a stepped channel. J. Hydraul. Res. 34(3), 421–429 (1996)CrossRefGoogle Scholar
  10. 10.
    Toombes, L.; Wagner, C.; Chanson, H.: Flow patterns in nappe flow regime down low gradient stepped chutes. J. Hydraul. Res. 46(1), 4–14 (2008)CrossRefGoogle Scholar
  11. 11.
    Carnacina, I.; Kurdistani, S.M.; Palermo, M.; et al.: El Chaparral dam Model: Rooster Tail Formation on High Sloped Spillway, pp. 65–73. School of Civil Engineering, Brisbane (2010)Google Scholar
  12. 12.
    Tuna, M.C.; Emiroglu, M.E.: Effect of step geometry on local scour downstream of stepped chutes. Arab. J. Sci. Eng. 38(3), 579–588 (2013)CrossRefGoogle Scholar
  13. 13.
    Najafi, M.R.; Zarrati, A.R.: Numerical simulation of air-water flow in gated tunnels. Water Manag. 163(6), 289–295 (2010)Google Scholar
  14. 14.
    Pagliara, S.; Kurdistani, S.M.; Roshni, T.: Rooster tail wave hydraulics of chutes. J. Hydraul. Eng. ASCE 137(9), 1085–1088 (2011)CrossRefGoogle Scholar
  15. 15.
    Wu, J.H.; Li, D.; Ma, F.; et al.: Fin characteristics of aerator devices with lateral deflectors. J. Hydrodyn. Ser. B 25(2), 258–263 (2013)CrossRefGoogle Scholar
  16. 16.
    Najafi, M.R.; Kavianpour, M.R.; Roshan, U.; et al.: Controlling rooster tail development in gated tunnels. Int. J. Hydropower Dams 20(1), 60–65 (2013)Google Scholar
  17. 17.
    Abdolahpour, M.; Roshan, R.: Flow aeration after gate in bottom outlet tunnels. Arab. J. Sci. Eng. 39(5), 3441–3448 (2014)CrossRefGoogle Scholar
  18. 18.
    Duan, W.J.: The submerged sloping-tail pier—an effective measure to eliminate the crown of jumping flow. J. Sichuan Univ. (Eng. Sci. Ed.) 1, 63–67 (1982). (in Chinese)Google Scholar
  19. 19.
    Reinauer, R.; Hager, W.H.: Supercritical flow behind chute piers. J. Hydraul. Eng. ASCE 120(11), 1292–1308 (1994)CrossRefGoogle Scholar
  20. 20.
    Reinauer, R.; Hager, W.H.: Pier waves in sloping chutes. Int. J. Hydropower Dams 4(3), 100–103 (1997)Google Scholar
  21. 21.
    Wu, J.H.; Cai, C.G.; Ji, W.; et al.: Hydraulic characteristics of water-wings for the middle-pier of a discharge tunnel. J. Hydrodyn. Ser. B 18(5), 567–571 (2006)CrossRefGoogle Scholar
  22. 22.
    Wu, J.H.; Yan, Z.M.: Hydraulic characteristics of bottom underlay-type pier for water-wing control. J. Hydrodyn. Ser. B 20(6), 735–740 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rouse, H.; Bhoota, B.V.; Hsu, E.Y.: High-velocity flow in open channels: a symposium: design of channel expansion. Trans. Am. Soc. Civ. Eng. 116(1), 347–363 (1951)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Hongcheng Xue
    • 1
  • Mingjun Diao
    • 1
  • Qian Ma
    • 2
  • Haomiao Sun
    • 1
  1. 1.State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
  2. 2.Southwest Hydraulic Institute for WaterwaysChongqing Jiaotong UniversityChongqingChina

Personalised recommendations