Effects of Irrigating with Saline Water on Soil Salinization (Eastern Tunisia)

  • Dhouha Louati
  • Rajouene Majdoub
  • Hafedh Rigane
  • Habib Abida
Research Article - Earth Sciences

Abstract

This study was conducted in the irrigation zone of ‘Zelba’, located in the Region of Mahdia (Eastern Tunisia). The main objective of the study is to investigate the effect of irrigating with saline water on soil properties. Soil sampling was carried out to a depth of 150 cm, with samples being collected from 20 plots. Two soil profiles were drilled in each plot. The first profile was taken from an irrigated area, where water salinity is around 7 mS/cm. The second profile was taken from a non-irrigated area. Salinity maps were developed using a kriging method. Soil characterization revealed that the soil is of a deep isohumic type with silty to silty-clay texture. The analysis results showed the presence of a high sodicity level. In fact, soil adsorption ratio and exchangeable sodium percentage exceeded the acceptable thresholds, being 10 and 15%, respectively. Salinity mapping of five soil layers showed little change of soil salinity for all the examined 20 plots. Nevertheless, the highest salinity levels occurred in the deepest layers of the southwestern part of the studied irrigation zone. For instance, the electric conductivity was shown to vary between 1.5 and 1.7 mS/cm, in the irrigated profile, while it varied between 1.5 and 2.6 mS/cm, in the non-irrigated profile. The low salinity observed in the north of the study area could be explained by the fact that this part is closer to the water well. Moreover, compared to irrigated zones, the non-irrigated areas are characterized by a higher level of salinity. Irrigation lowered the salinity of the irrigated area through salts leaching. Monitoring of soil salinity and sodicity over time proved an enrichment of soil by salts and exchangeable Na\(^{+}\)content. This trend is attributed to the application of saline irrigation water.

Keywords

Kriging Saline water Soil salinity Sodicity Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Research Unit of the Applied Hydrosciences of the Institute of Sciences and Technology of Water (Gabes. Southern Tunisia). The authors would like to express their sincere thanks to the High Institute of Agronomy of Chott Mariem of Sousse (Tunisia) for helping in the laboratory and field measurements.

References

  1. 1.
    Shahbaz, M.; Achraf, M.: Improving salinity tolerance in cereals. Crit. Rev. Plant Sci. 32, 237–349 (2013)CrossRefGoogle Scholar
  2. 2.
    Gorji, T.; Tnik, A.; Sertel, E.: Soil salinity prediction, monitoring and mapping using moderns technologies. Procedia Earth Planet. Sci. 15, 507–512 (2015)CrossRefGoogle Scholar
  3. 3.
    Svostianova, E.; Leinauer, B.; Sallenave, R.; Karcher, D.; Maier, B.: Soil salinity and quality of sprinkler and drip irrigated warm-season turfgrasses. Agron. Soil. Environ. Qual. 103, 1773–1784 (2011)Google Scholar
  4. 4.
    Tanji, K.; Grattan, S.; Grieve, C.; Harivandi, A.; Rollins, L.; Shaw, D.; Sheikh, B.; Wu, L.: A comprehensive literature review on salt management guide for landscape irrigation with recycled water in coastal southern California. http://www.salinitymanagement.org (2008)
  5. 5.
    Amezketa, E.: An integrated methodology for assessing soil salinization, a pre-condition for land desertification. J. Arid Environ. 67, 594–606 (2006)CrossRefGoogle Scholar
  6. 6.
    Acosta, J.A.; Faz, A.; Jansen, B.; Kalbitz, K.; Martinez, S.: Assessment of salinity status in intensively cultivated soils under semi-arid climate, Murcia, Spain. J. Arid Environ. 75(11), 1056–1066 (2011)CrossRefGoogle Scholar
  7. 7.
    Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J.: Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119, 329–339 (2007)CrossRefGoogle Scholar
  8. 8.
    Jamil, A.; Riaz, S.; Achraf, F.; Foolad, M.R.: Gene expression profiling of plants under salt stress. Crit. Rev. Plant. Sci. 30(5), 435–458 (2011)CrossRefGoogle Scholar
  9. 9.
    European Commission: Towards a Thematic Strategy for Soil Protection. COM 179 final, European Commission, Brussels, Belgium (2002)Google Scholar
  10. 10.
    Dehaan, R.L.; Taylor, G.R.: Field derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 80(3), 406–417 (2002)CrossRefGoogle Scholar
  11. 11.
    Patel, B.B.; Bharat, B.; Dave, R.S.: Studies on infiltration of saline-alkali soils of several parts of Mehsana and Patan districts of north Gujarat. J. Appl. Technol. Environ. Sanit. 1(1), 87–92 (2011)Google Scholar
  12. 12.
    Aragues, R.; Urdanoz, V.; Cetin, M.; Kirda, C.; Daghari, H.; Ltifi, W.; Lahlou, M.; Douaik, A.: Soil salinity related to physical soil characteristics and irrigation management in four Mediterranean irrigation districts. Agric. Water Manag. 98, 959–966 (2011)CrossRefGoogle Scholar
  13. 13.
    Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; Van der Zee, S.: Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ. Exp. Bot. 92, 176–185 (2013)CrossRefGoogle Scholar
  14. 14.
    Mezni, M.; Bizid, E.; Hamza, H.: Irrigation saline water effects on mineral nutrition in three varieties of perennial alfalfa. Agron. J. 22, 283–291 (2002)CrossRefGoogle Scholar
  15. 15.
    Yankovitch, L.: Chloride resistance of cultivated crops. II-vegetable beet, radish. Turnip, cabbage and fennel, tomato Marmande of Algeria. SBAT Dir. 24, 33–64 (1951)Google Scholar
  16. 16.
    Roederer, P.; Cointepas, J.P.: Preliminary results of soil salinity evolution after irrigation by saline water in Tunisia. Agron. Dir. 12, 121–126 (1955)Google Scholar
  17. 17.
    Ben Hassine, H.: Soil Salinity Evolution Monitoring in the Region of Mahdia. The Use of Brackish Water in Irrigation. CRDA Mahdia, Tunisia (1998)Google Scholar
  18. 18.
    Majdoub, R.; Hachicha, M.; El Amri, A.; Melki, M.: Etude de la dynamique de l’eau et du transfert des sels dans un sol sablo-limoneux du Sahel Tunisien. Eur. J. Sci. Res. 80, 499–507 (2012)Google Scholar
  19. 19.
    Charfi, F.; El Habaieib, A.: L’aménagement de l’espace industriel à Sfax : une opportunité économique mais des contraintes écologiques. In : L’Aménagement Face au Défi de l’Environnement, Collection Adicueer. Paris, pp. 105 -117 (1995)Google Scholar
  20. 20.
    Hatira, A.; Baccar, L.; Grira, M.; Gallali, T.: Analyse de sensibilité du système oasien et mesures de sauvegarde de l’oasis de Métouia (Tunisie). Revue des sciences de l’eau 20, 59–69 (2007)CrossRefGoogle Scholar
  21. 21.
    Bouarfa, S.; Marlet, S.; Douaoui, A.; Hartani, T.; Mekki, I.; Ghazouani, W.; Ben Aissa, I.; Vincent, B.; Hassani, F.; Kuper, M.: Salinity patterns in irrigation systems. a threat to be demystified. A constraint to be managed: field evidence from Algeria and Tunisia. Irrig. Drain. 58, 273–284 (2009)CrossRefGoogle Scholar
  22. 22.
    Marlet, S.; Bouksila, F.; Mekki, L.; Benaissa, I.: Fonctionnement et salinité de la nappe de l’oasis de Fatnassa: Arguments géologiques. Actes du troisième atelier régional du projet Sirma, Nabeul, Tunisie (2007)Google Scholar
  23. 23.
    Kanzari, S.; Hachicha, M.; Bouhlila, R.; Battle-Sales, J.: Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bouhajla, Kairouan)—salinization risk of soils and aquifers. Comput. Eelectron. Agric. 86, 34–42 (2012)CrossRefGoogle Scholar
  24. 24.
    Hachicha, M.; Job, J.O.; Mtimet, A.: Les sols salés et la salinisation en Tunisie. Sols de Tunisie. Bulletin de la Direction des Sols 15, 270–341 (1994)Google Scholar
  25. 25.
    Durand, J.H.: Les sols irrigables. Etude pédologique. ED. Imbert, Algerie (1958)Google Scholar
  26. 26.
    US Salinity Laboratory Staff: Diagnosis and Improvement of Saline and Alkali Soils. US Department of Agriculture. Handbook \(n^{\circ }60\), U.S. Government Printing Office, Washington, (1954)Google Scholar
  27. 27.
    Yoka, J.; Loumeto, J.J.; Vouidibio, J.; Amiaud, B.; Epron, D.: Influence du sol sur la répartition et la production de phytomasse de savanes de la cuvette congolaise (République du Congo). Geo. Eco. Trop. 34, 63–74 (2010)Google Scholar
  28. 28.
    Jackson, M.L.: Soil Chemical Analysis. Printice Hall Pvt. Ltd., New Delhi (1973)Google Scholar
  29. 29.
    Hulseman, J.: An inventory of marine carbonate materials. J. Sediment. Petrol. 36, 622–625 (1966)Google Scholar
  30. 30.
    Muller, G.; Gatsner, M.: Chemical analysis. Neues Jahrbuch fur Mineralogie Monatshefte 10, 466–469 (1971)Google Scholar
  31. 31.
    Walkey, A.; Black, I.A.: An examination of the Degtjareff method for determining soil organic matter and a proposal modification of the chromic acid titration method. J. Soil. Sci. 37(1), 29–38 (1934)CrossRefGoogle Scholar
  32. 32.
    Nelson, D.W.; Sommers, L.E.: Total carbon, organic carbon, and organic matter. In: Page, A.L., et al. (eds.) Methods of Soil Analysis, Part 2, 2nd edn, pp. 961–1010. American Society of Agronomy Inc., Madison, WI (1996)Google Scholar
  33. 33.
    Busemburg, E.; Clemency, C.V.: Determination of the cationexchange capacity of clays. Clays. Clay. Miner. 21, 213–217 (1972)CrossRefGoogle Scholar
  34. 34.
    Gamma Design Software. GS+: Geostatistics for the environmental sciences. Version 10.0. https://www.gammadesign.com/files/GSPlusUserGuide.pdf; https://www.gammadesign.com/DemoDownload.aspx
  35. 35.
    Subramoniam, S.R.; Bera, A.K.; Sharma, J.R.: Estimating Variograms of soil salinity properties by kriging, remote sensing and GISTechniques in Indira Gandhi Nahar Pariyojana irrigation command of Rajasthan, India. Ann. Arid Zone 50, 93–97 (2011)Google Scholar
  36. 36.
    Nawar, S.; Reda, M.; Farag, F.; El Nahry, A.: Mapping soil salinity in El-Thina Plain in Egypt using geostatistical approach. In: Car, A.; Griesebner, G.; Strobl, G. (eds.) Geospatial Crossroads, pp. 81–90, Berlin (2011)Google Scholar
  37. 37.
    Issaks, E.H.; Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)Google Scholar
  38. 38.
    Durand, J.H.: Using saline waters in irrigation. Tech. Bull. 276, 39–58 (1973)Google Scholar
  39. 39.
    Listkas, V.D.; Aschonitis, V.G.; Antonopulos, V.Z.: Water quality in irrigation and drainage networks of Thessalonski plain in Greece related to land use, water management, and agroecosystem protection. Environ. Monit. Assess. 163, 347–359 (2010)CrossRefGoogle Scholar
  40. 40.
    Muthanna, M.N.: Quality assessment of Tigris river by using water quality index for irrigation purpose. Eur. J. Sci. Res. 57, 15–28 (2011)Google Scholar
  41. 41.
    Mtimet, A.: Atlas Tunisian Soils. Agricultural Ministry, Tunisia (1999)Google Scholar
  42. 42.
    Hamilton, N.: USDA Textural Soil Classification. http://www.ggtern.com/2014/01/15/usda-textural-soil-classification/ (2014)
  43. 43.
    Poussin, J.C.; Boivin, P.; Hammecker, C.; Maeght, J.L.: Riziculture irriguée et évolution des sols dans la vallée du Sénégal. Acte de l’atelier du PCSI Montpelier, France (2002)Google Scholar
  44. 44.
    Aubert, G.: Observations sur les caractéristiques, la dénomination et la classification des sols dits (salés) ou salsodiques. Cahier d’ORSTOM, série, Pédologie, pp. 73–78 (1983)Google Scholar
  45. 45.
    Louati, D.: Irrigation using brackish water in the irrigation system ‘Zelba’. Thesis in Geological Sciences, Faculty of Sciences of Sfax, Tunisia (2015)Google Scholar
  46. 46.
    Bajwa, M.S.; Hira, G.S.; Singh, N.T.: Effect of sodium and bicarbonate irrigation waters on sodium accumulation and on maize and wheat yields in Northern India. J. Irrig. Sci. 4, 191–199 (1983)CrossRefGoogle Scholar
  47. 47.
    Almazi, A.; Jalalian, A.; Toomanian, N.: Using OK and IDW methods for prediction the spatial variability of a horizon depth and OM in soils of Shahrekord, Iran. J. Environ. Earth. Sci. 4(15), 17–27 (2014)Google Scholar
  48. 48.
    Douaoui, A.; Yahiaoui, I.: Combination of remote sensing and kriging to improve soil salinity mapping in the Hmada Plain (Algeria). Soil. Water. J. 1(5), 1–5 (2015)Google Scholar
  49. 49.
    Walter, C.; McBratney, A.B.; Douaoui, A.; Minasny, B.: Spatial prediction of topsoil salinity in the Chelif Valley Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Aust. J. Soil. Res. 39, 259–72 (2001)CrossRefGoogle Scholar
  50. 50.
    Cambradella, C.A.; Moorman, T.B.; Novac, J.M.; Parkin, T.B.; Karlen, D.L.; Turko, R.F.; Konopka, A.E.: Field-scale variability of soil properties in central iowa soil. Soil. Sci. Soc. Am. J. 58, 1501–1511 (1994)CrossRefGoogle Scholar
  51. 51.
    Louati, D.; Majdoub, R.; Selmani, S.; Achour, N.; Hannachi, N.; Abida, H.: Soil salinity mapping in the irrigated perimeter Zelba of the region of Mahdia (Tunisian Sahel). J. Larhyss 30, 191–204 (2017)Google Scholar
  52. 52.
    Bahri, A.: Salinity evolution in the irrigated perimeter of the low valley of Medjerdah (Tunisia). J. Soil. Sci. 31(3), 125–140 (1993)Google Scholar
  53. 53.
    Hachicha, M.; Khaldi, R.; Mougou, M.: Irrigation using geothermal water in southern Tunisia. Study Soil. Manag. J. 19(2), 91–103 (2012)Google Scholar
  54. 54.
    Alvarez-Rogel, J.; Hernandez, J.; Ortiz-Silla, R.; Alcazaz, F.: Patterns of spatial and temporal variabilitys in soil salinity: example of a salt marsh in a semiarid climate. Arid Soil. Res. Rehabilit. 11, 315–329 (1997)CrossRefGoogle Scholar
  55. 55.
    Herrero, J.; Castaneda, C.: Changes in soil salinity in the habitats of five halophytes after 20 years. Catena 109, 58–71 (2013)CrossRefGoogle Scholar
  56. 56.
    Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C.: Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water. Manag. 97, 2001–2008 (2008)CrossRefGoogle Scholar
  57. 57.
    Wu, J.; Vincent, B.; Yang, J.; Bouarfa, S.; Vidal, A.: Remote sensing monitoring of changes in soil salinity: a case study in inner Mongolia, China. Sensors 8, 7035–7049 (2008)CrossRefGoogle Scholar
  58. 58.
    Melgar, J.C.; Mohamed, Y.; Serrano, N.; Garcia-Galavis, P.A.; Navarro, C.; Parra, M.A.; Benlloch, M.; Fernandez-Escobar, R.: Long term response of olive trees to salinity. Agric. Water. Manag. 96, 1105–1113 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Dhouha Louati
    • 1
    • 2
  • Rajouene Majdoub
    • 3
  • Hafedh Rigane
    • 1
  • Habib Abida
    • 1
    • 2
  1. 1.Department of Earth Sciences, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Applied HydrosciencesInstitute of Sciences and Technology of Water in GabesGabesTunisia
  3. 3.Department of Horticultural Systems Engineering and Natural Environment, High Institute of Agronomy of Chott MariemUniversity of SousseChott Mariem, SousseTunisia

Personalised recommendations