Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 7, pp 3775–3792 | Cite as

Building 3D Lithofacies and Depositional Models Using Sequential Indicator Simulation (SISIM) Method: A Case History in Western Niger Delta

  • Kehinde David Oyeyemi
  • Mary Taiwo Olowokere
  • Ahzegbobor Philips Aizebeokhai
Research Article - Earth Sciences
  • 40 Downloads

Abstract

Sequential indicator simulation algorithm is one of the popular stochastic simulation algorithms for reservoir geomodelling. It has been used to model delineated lithofacies and depofacies units within the OPO field, western Niger Delta. This simulation algorithm was chosen because of its ability to honour the well logs as local conditioning data using the global histogram, areal and vertical geological trends of the data, as well as the patterns of correlation. Three lithofacies were identified and modelled, namely sand, shaly sand and shale units. Vertical succession of the depositional facies within the field reveals five major facies which are basal shelf shale facies, heterolithic (sand–shale) facies, lower shoreface sand facies, upper shoreface sand facies and shoreface channel systems. The general environment of deposition is interpreted to be shoreline–shelf systems where the shoreface channel units, upper shoreface sand, lower shaly sand and heterolithic units constitute the parallic reservoir sequences, while the shale units within the shoreface and coastal environments act as potential source rocks and caprocks for hydrocarbon accumulation.

Keywords

Geostatistical modelling Facies modelling EOD Reservoir characterization Niger Delta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edigbue, P.; Olowookere, M.T.; Adetokunbo, P.; Jegede, E.: Integration of sequence stratigraphy and geostatistics in 3-D reservoir modelling: a case study of Otumara field, onahore Niger Delta. Arab. J. Geosci. 8(10), 8615–8631 (2015).  https://doi.org/10.1007/s12517-015-1821-8 CrossRefGoogle Scholar
  2. 2.
    Mikes, D.; Geel, C.: Standard facies models to incorporate all heterogeneity levels in a reservoir model. Marin Pet. Geol. 23, 943–959 (2006)CrossRefGoogle Scholar
  3. 3.
    Cao, R.; Zee, M.Y.; Gomez, E.: Geostatistical applications in petroleum reservoir modelling. J. South. Afr. Inst. Min. Metall. 114, 625–630 (2014)Google Scholar
  4. 4.
    Cosentino, R.L. (ed.): Integrated Reservoir Studies. Editions Technip, Paris (2001)Google Scholar
  5. 5.
    Matheron, G. (ed.): Éléments pour une théorie des milieu poreux. Masson, Paris (1967)Google Scholar
  6. 6.
    Stoyan, D.S.; Kendal, W.S.; Mecke, J. (eds.): Stochastic Geometry and Its Application, 2nd edn. Wiley, Chichester (1995)Google Scholar
  7. 7.
    Deutsch, C.V.; Journel, A.G. (eds.): GSLIB. Geostatistics Software Library and User’s Guide, New York (1998)Google Scholar
  8. 8.
    Liu, Y.; Harding, A.; Abriel, W.; Strebelle, S.: Multiple-point simulation integrating wells, three-dimensional seismic data, and geology. AAPG Bull. 88(7), 905–921 (2004)CrossRefGoogle Scholar
  9. 9.
    Hu, L.Y.; Le Ravalec-Dupin, M.: Elements for an integrated geostatistical modelling of heterogeneous reservoirs. Oil Gas Sci. Technol. 59(2), 141–155 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhang, T.: Incorporating geological conceptual models and interpretations into reservoir modelling using multiple-point geostatistics. Earth Sci. Front. 15(1), 26–35 (2008)CrossRefGoogle Scholar
  11. 11.
    Al-Mudhafar, W.A.: Geostatistical lithofacies modelling of the upper sandstone member/Zubair formation in south Rumaila oil field, Iraq. Arab. J. Geosci. 10, 153–167 (2017).  https://doi.org/10.1007/s12517-017-2951-y CrossRefGoogle Scholar
  12. 12.
    Mohammadmoradi, P.: Facies and fracture network modelling by a novel image processing based method. Geomaterials 3, 156–164 (2013)CrossRefGoogle Scholar
  13. 13.
    Jacod, J.; Joathon, O.: Use of random genetic models in the study of sedimentary processes. Math. Geol. 3, 265–279 (1971)CrossRefGoogle Scholar
  14. 14.
    Hu, L.Y.; Joseph, P.; Dubrule, O.: Random genetic simulation of the internal geometry of deltaic sand bodies. SPE Formation Eval. 9(4), 245–250 (1994)CrossRefGoogle Scholar
  15. 15.
    Lopez, S.; Galli, A.; Cojan, I.: Fluvial meandering channelized reservoirs: a stochastic and process-based approach. In: Proceedings of the Annual Conference of the International Association of Mathematical Geology, 6–12 September, Cancun Mexico (2001)Google Scholar
  16. 16.
    Guardiano, F.; Srivastava, M.: Multivariate geostatistics: beyond bivariate moments. In: Soares, A. (ed.) Geostatistics Troia’92, vol. 1, pp. 133–144 (1993)Google Scholar
  17. 17.
    Strebelle, S.; Journel, A.: Sequential simulation drawing structures from training images. In: Kleingeld and Krige (eds.) Geostatistics 2000 Cape Town, vol. 1, pp. 381–392 (2000)Google Scholar
  18. 18.
    Patrick, D.D.; Gerilyn, S.S.; John, P.C.: Outcrop-base reservoir characterization: a composite phylloid-algal mound, western Orogrande Basin (New Mexico). AAPG Bull 86(5), 779–795 (2002).  https://doi.org/10.1306/61EEDB98-173E-11D7-8645000102C1865D Google Scholar
  19. 19.
    Damuth, J.E.: Neogene gravity tectonics and depositional processes on the deep Niger Delta Continental margin. Mar. Pet. Geol. 11(3), 320–346 (1994)CrossRefGoogle Scholar
  20. 20.
    Bilotti, F.; Shaw, J.H.: Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge; the influence of elevated baal fluid pressure on structural styles. AAPG Bull. 89(11), 1475–1491 (2005)CrossRefGoogle Scholar
  21. 21.
    Hosper, J.: The geology of the Niger Delta area. In: The Geology of the East Atlantic Continental Margin, Great Britain. Inst. Geological Sci. Report, vol. 70(16), pp. 121–147 (1971)Google Scholar
  22. 22.
    Merki, P.J.: Structural geology of the Cenozoic Niger Delta. In: 1st Conference on African Geology Proceedings. Ibadan University Press, Nigeria (1972)Google Scholar
  23. 23.
    Thomas, D.: Niger Delta oil production, reserves, field sizes assessed. Oil Gas J. 93(46), 101–104 (1995)Google Scholar
  24. 24.
    Lawrence, S.R.; Munday, S.; Bray, R.: Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). Lead Edge 21(11), 1112–1117 (2002)CrossRefGoogle Scholar
  25. 25.
    Avbovbo, A.A.: Tertiary lithostratigraphy of Niger Delta. AAPG Bull. 62, 295–300 (1978)Google Scholar
  26. 26.
    Orife, J.M.; Avbovbo, A.A.: Stratigraphic and unconformity traps in the Niger Delta. AAPG Bull. 57, 251–262 (1981)Google Scholar
  27. 27.
    Serra, A.; Sulpice, L.: Sedimentological analysis of sand-shale series from well logs. In: 16th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts (SPWLA). Paper W (1975)Google Scholar
  28. 28.
    Rider, M.: Gamma-ray log shape used as a facies indicator: critical analysis of an oversimplified methodology. In: Hurst, A., Lovell, M.A., Morton, A.C. (eds.) Geological Application of Wireline Logs, pp. 27–37. Geological Society of London Special Publication, London (1990).  https://doi.org/10.1144/GSL.SP.1990.048.01.04 Google Scholar
  29. 29.
    Ates, H.; Bahar, A.; El-Abd, S.; Charfeddine, M.; Kelkar, M.; Datta-Gupta, A.: Ranking and upscalling of geostatistical reservoir models by use of streamline simulation: a field case study. Soc. Pet. Eng. Reserv. Eval. Eng. 8(1), 22–32 (2005)Google Scholar
  30. 30.
    Sablok, R.; Aziz, K.: Upscaling and Discretization Errors in Reservoir Simulation. SPE Reservoir Simulation Symposium. Texas (2005).  https://doi.org/10.2118/93372-MS
  31. 31.
    Lambers, J.V.; Gerritsen, M.G.; Mallison, B.T.: Accurate local upscaling with variable compact multipoint transmissible calculations. Comput. Geosci. 12, 399–416 (2008).  https://doi.org/10.1007/s10596-007-9068-4 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gringarten, E.; Deutsch, CV.: Methodology for variogram interpretation and modelling for improved reservoir characterization. In: SPE Annual Technical Conference, pp. 1–13 (1999).  https://doi.org/10.2118/56654-MS
  33. 33.
    Esfahani, N.M.; Asghari, O.: Fault detection in 3D by sequential Gaussian simulation of Rock Quality Designation (RQD) Case study: Gazestan phosphate ore deposit, Central Iran. Arab. J. Geosci. 6(10), 3737–3747 (2013).  https://doi.org/10.1007/s12517-012-0633-3 CrossRefGoogle Scholar
  34. 34.
    Journel, A.G.; Alabert, F.G.: New method for reservoir mapping. J. Pet. Technol. 42(02), 212–218 (1990)CrossRefGoogle Scholar
  35. 35.
    Journel, A.G.; Go’mez-Herna’ndez, J.J.: Stochastic imaging of the Wilmington clastic sequence. Soc. Pet. Eng. Formation Eval. 8(1), 33–40 (1993).  https://doi.org/10.2118/19857-PA CrossRefGoogle Scholar
  36. 36.
    Caers, J.: Direct sequential indicator simulation. In: The 6th International Geostatistics Congress, South Africa (2000)Google Scholar
  37. 37.
    Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, New York (1997)Google Scholar
  38. 38.
    Pyrcz, M.J.; Deutsch, C.V.: Geostatistical Reservoir Modelling, 2nd edn. Oxford University Press, New York (2014)Google Scholar
  39. 39.
    Van Wagoner, J.C.; Mitchum, R.M.; Campion, K.M.; Rahmanian, V.D.: Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high-resolution correlations of time and facies. AAPG Methods Explor. Ser. 7, 55 (1990)Google Scholar
  40. 40.
    Boyd, R.; Dalrymple, R.; Zaitlin, B.A.: Classification of clastic coastal depositional environments. Sediment. Geol. 1978(80), 139–150 (1992)CrossRefGoogle Scholar
  41. 41.
    Hosper, J.: The geology of the Niger Delta area. In: The Geology of the East Atlantic Continental Margin, Great Britain. Inst. Geological Sci. Report, vol. 70(16), pp. 121–147 (1971)Google Scholar
  42. 42.
    Reynolds, A.D.: Paralic reservoirs. In: Hampson, G.J., Reynolds, A.D., Kostic, B., Wells, M.R. (eds.) Sedimentology of Paralic Reservoirs: Recent Advances, pp. 1–28. Geological Society of London Special Publications, London (2016)Google Scholar
  43. 43.
    Weber, K.J.; Van Guens, L.C.: Framework for constructing clastic reservoir simulation models. J. Pet. Technol. 43, 1248–1253 (1990)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018
corrected publication April 2018

Authors and Affiliations

  • Kehinde David Oyeyemi
    • 1
  • Mary Taiwo Olowokere
    • 2
  • Ahzegbobor Philips Aizebeokhai
    • 1
  1. 1.Applied Geophysics Unit, College of Science and TechnologyCovenant UniversityOtaNigeria
  2. 2.Department of GeologyObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations