Three-Dimensional Modeling Shock-Wave Interaction with a Fin at Mach 5
- 7 Downloads
Abstract
The three-dimensional single-fin configuration finds application in an intake geometry where the cowl-shock wave interacts with the side-wall boundary layer. Accurate numerical simulation of such three-dimensional shock/turbulent boundary-layer interaction flows, which are characterized by the appearance of strong crossflow separation, is a challenging task. Reynolds-averaged Navier–Stokes computations using the shock-unsteadiness modified Spalart–Allmaras model is carried out at Mach of 5 at large fin angle of \(23^{\circ }\). The computed results using the modified model are compared to the standard Spalart–Allmaras model and validated against the experimental data. The focus of the work is to implement the modified model and to study the flow physics in detail in the complex region of swept-shock-wave turbulent boundary-layer interaction in terms of the shock structure, expansion fan, shear layer and the surface streamlines. The flow structure is correlated with the wall pressure and skin friction in detail. It is observed that the standard model predicts an initial pressure location downstream of the experiments. The modified model reduces the eddy viscosity at the shock and predicts close to the experiments. Overall, the surface pressure using modified model has predicted accurately at all the locations. The skin friction is under-predicted by both the models in the reattachment region and is attributed to the poor performance of turbulence models due to flow laminarization.
Keywords
High-speed flows Shock wave Turbulent boundary layer Shock-unsteadiness Separation bubble Turbulence modeling Single fin Compressible flows Computational fluid dynamicsList of symbols
- \(b'_1\)
Shock-unsteadiness damping parameter
- \(C_\mathrm{f}\)
Skin friction coefficient
- \(c_{b_1}'\)
Shock-unsteadiness parameter
- \(M_{1n}\)
Upstream Mach number normal to shock
- \(z_2^+\)
Wall-normal distance to the nearest point in wall coordinates
- \(\delta _0\)
Boundary-layer thickness upstream of interaction
- \(\mu _T\)
Eddy viscosity
- \(\nu \)
Kinematic molecular viscosity
- \(\tilde{\nu }\)
Modified turbulent kinematic viscosity
Subscripts
- 0
Stagnation condition
- n
Normal to shock wave
- w
Wall condition
- \(\infty \)
Freestream condition
Abbreviation
- CFL
Courant-Friedrichs-Lewy
- SA
Spalart–Allmaras
Preview
Unable to display preview. Download preview PDF.
References
- 1.Van Wie, D.M.: Scramjet inlets. In: Curran, E.T., Murthy, S.N.B. (eds.) Scramjet Propulsion, Progress in Astronautics and Aeronautics, pp. 447–511. Institute of Aeronautics and Astronautics Inc., Reston (2000)Google Scholar
- 2.Bose, D.; Brown, J.L.; Prabhu, D.K.; Gnoffo, P.; Johnston, C.O.; Hollis, B.: Uncertainty assessment of hypersonic aerothermodynamics prediction capability. J. Spacecr. Rockets 50(1), 12–18 (2003)CrossRefGoogle Scholar
- 3.Marvin, J. G.; Brown, J. L.; Gnoffo, P. A.: Experimental database with baseline CFD solutions: 2-d and axisymmetric hypersonic shock-wave/turbulent boundary-layer interactions, NASA TM2013216604 (2013)Google Scholar
- 4.Garnier, E.; Adams, N.; Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
- 5.Georgiadis, N.J.; Yoder, D.A.; Vyas, M.A.; Engblom, W.A.: Status of turbulence modeling for hypersonic propulsion flowpaths. Theor. Comput. Fluid Dyn. 28(3), 295–318 (2014)CrossRefGoogle Scholar
- 6.Yang, Z.: Large-eddy simulation: past, present and the future. Chin. J. Aeronaut. 28(1), 11–24 (2015)CrossRefGoogle Scholar
- 7.Fang, J.; Yao, Y.; Zheltovodov, A.A.; Lu, L.: Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin. AIAA J. 55(2), 509–523 (2017)CrossRefGoogle Scholar
- 8.Kubota, H.; Stollery, J.: An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer. J. Fluid Mech. 116, 431–58 (1982)CrossRefGoogle Scholar
- 9.Alvi, F.S.; Settles, G.: Physical model of the swept shock wave/boundary layer interaction flowfield. AIAA J. 30(9), 2252–2258 (1992)CrossRefGoogle Scholar
- 10.Edwards, J.R.; Chandra, S.: Comparison of eddy viscosity-transport turbulence models for three-dimensional shock-separated flowfields. AIAA J. 34(4), 756–763 (1996)CrossRefGoogle Scholar
- 11.Panaras, A.G.: The effect of the structure of swept-shock-wave/turbulent boundary-layer interactions on turbulence modeling. J. Fluid Mech. 338, 203–230 (1997)CrossRefMATHGoogle Scholar
- 12.Thivet, F.: Lessons learned from RANS simulations of shock wave/boundary layer interactions. AIAA Paper, p. 583 (2002)Google Scholar
- 13.Panaras, A.G.: Calculation of flows characterized by extensive crossflow separation. AIAA J. 42(12), 2474–2475 (2004)CrossRefGoogle Scholar
- 14.Delery, J.; Marvin, J. G.; Reshotko, E.: Shock-wave boundary layer interactions. AGARDograph No. 280. ISBN 92-835-159-6 (1996)Google Scholar
- 15.Panaras, A.G.: Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32, 173–244 (1996)CrossRefGoogle Scholar
- 16.Knight, D.D.; Degrez, G.: Shock wave turbulent boundary layer interactions in high mach number flows—a critical survey of current numerical prediction capabilities. AGARD Advis. Rep. 319(2), 1.1–1.35 (1998)Google Scholar
- 17.Knight, D.; Yan, H.; Panaras, A.G.; Zheltovodov, A.: Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39(2–3), 121–184 (2003)CrossRefGoogle Scholar
- 18.Babinsky, H.; Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011)CrossRefMATHGoogle Scholar
- 19.Roy, C.J.; Blottner, F.G.: Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci. 42(7–8), 469–530 (2006)CrossRefGoogle Scholar
- 20.Ma, L.; Lu, L.; Fang, J.; Wang, Q.: A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow. Chin. J. Aeronaut. 27(2), 200–209 (2014)CrossRefGoogle Scholar
- 21.Panaras, A.G.: Turbulence modeling of flows with extensive crossflow separation. Aerospace 2(3), 461–481 (2015)CrossRefGoogle Scholar
- 22.Gaitonde, D.V.: Progress in shock-wave/boundary-layer interactions. Prog. Aerosp. Sci. 721, 80–99 (2015)CrossRefGoogle Scholar
- 23.Sinha, K.; Mahesh, K.; Candler, G.V.: Modeling the effect of shock-unsteadiness in shock/turbulent boundary-layer interactions. AIAA J. 43(3), 586–594 (2005)CrossRefGoogle Scholar
- 24.Pasha, A.A.; Sinha, K.: Shock unsteadiness model applied to hypersonic shock wave/turbulent boundary-layer interactions. J. Propul. Power 28(1), 46–60 (2012)CrossRefGoogle Scholar
- 25.Spalart, P. R.; Allmaras, S. R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper, p. 439 (1992)Google Scholar
- 26.Schulein, E.: Optical skin friction measurements in short-duration facilities. AIAA J. 44(8), 1732–1742 (2006)CrossRefGoogle Scholar
- 27.Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn, pp. 491–492. DCW Industries, La Canada (2000)Google Scholar
- 28.Catris, S.; Aupoix, B.: Density corrections for turbulence models. Aerosp. Sci. Technol. 4(1), 1–11 (2000)CrossRefMATHGoogle Scholar
- 29.Deck, S.; Duveau, P.; d’Espiney, P.; Guillen, P.: Development and application of Spalart–Allmaras one-equation turbulence model to three-dimensional supersonic complex configurations. Aerosp. Sci. Technol. 6(3), 171–183 (2002)CrossRefMATHGoogle Scholar
- 30.Sinha, K.; Candler, G. V.: Convergence improvement of two-equation turbulence model calculations. AIAA Paper p. 2649 (1998)Google Scholar
- 31.Pasha, A.A.; Sinha, K.: Shock-unsteadiness model applied to oblique shock-wave/turbulent boundary-layer interaction. Int. J. Comput. Fluid Dyn. 22(8), 569–582 (2008)CrossRefMATHGoogle Scholar
- 32.Pasha, A.A.: Study of parameters affecting separation bubble size in high speed flows using \(k\)-\(\omega \) turbulence model. J. Appl. Comput. Mech. 4(2), 95–104 (2018)Google Scholar
- 33.Nompelis, I.: Computational study of hypersonic double-cone experiments for code validation. Thesis (Ph.D.), University of Minnesota (2004)Google Scholar
- 34.Edney, B. E.: Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Rept. 115, The Aeronautical Research Institute of Sweden, Stockholm (1968)Google Scholar
- 35.Quadros, R.; Sinha, K.; Larsson, J.: Turbulent energy flux generated by shock/homogeneous turbulence interaction. J. Fluid Mech. 976, 113–157 (2016)MathSciNetCrossRefGoogle Scholar
- 36.Quadros, R.; Sinha, K.: Modelling of turbulent energy flux in canonical shock-turbulence interaction. Int. J. Heat Fluid Flow 61, 626–635 (2016)CrossRefGoogle Scholar
- 37.Roy, S.; Pathak, U.; Sinha, K.: Variable turbulent Prandtl number model for shock/boundary-layer interaction. AIAA J. 56(1), 342–355 (2018)CrossRefGoogle Scholar