Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4871–4878 | Cite as

Corrosion Behavior of ECAP-Processed AM90 Magnesium Alloy

  • K. R. Gopi
  • H. Shivananda Nayaka
  • Sandeep Sahu
Research Article - Mechanical Engineering


Magnesium AM90 alloy was subjected to equal-channel angular pressing (ECAP) using route \(\hbox {B}_{\mathrm{C}}\). Microstructural characterization revealed refined grains having average grain size \(\sim \,3\,\upmu \hbox {m}\) after ECAP 4 passes. Samples were subjected to electrochemical measurements to study the corrosion behavior. Potentiodynamic polarization test showed reduced corrosion current density \((I_{\mathrm{corr}})\) for processed samples up to ECAP 3 pass due to grain refinement. Electrochemical impedance spectroscopy showed an increase in the diameter of the capacitive arcs and charge-transfer resistance \((R_{\mathrm{t}})\) for ECAP-processed 3 pass sample indicating the reduction in corrosion rate. Increase in corrosion resistance is due to refined microstructure and uniform distribution of secondary particles forming a protective passivation layer \((\hbox {Mg}(\hbox {OH})_{2})\) on the sample’s surface. Immersion test indicated lower hydrogen evolution from ECAP-processed samples compared to the unprocessed condition indicating decreased corrosion rate.


Equal-channel angular pressing Magnesium Microstructure Grain refinement Corrosion resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valiev, R.Z.; Krasilnikov, N.A.; Tsenev, N.K.: Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 137, 35–40 (1991)CrossRefGoogle Scholar
  2. 2.
    Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3(8), 511–516 (2004)CrossRefGoogle Scholar
  3. 3.
    Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zechetbauer, M.J.; Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33–39 (2006)CrossRefGoogle Scholar
  4. 4.
    Yadav, P.C.; Sinhal, A.; Sahu, S.; Roy, A.; Shekhar, S.: Microstructural inhomogeneity in constrained groove pressed Cu–Zn alloy sheet. J. Mater. Eng. Perform. 25(7), 2604–2614 (2016)CrossRefGoogle Scholar
  5. 5.
    Yadav, P.C.; Sahu, S.; Subramaniam, A.; Shekhar, S.: Effect of heat-treatment on microstructural evolution and mechanical behaviour of severely deformed Inconel 718. Mater. Sci. Eng. A 715, 295–306 (2018)CrossRefGoogle Scholar
  6. 6.
    Langdon, T.G.; Furukawa, M.; Nemoto, M.; Horita, Z.: Using equal-channel angular pressing for refining grain size. JOM 52(4), 30–33 (2000)CrossRefGoogle Scholar
  7. 7.
    Gopi, K.R.; Nayaka, H.S.; Sahu, S.: Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy. J. Mater. Eng. Perform. 25(9), 3737–3745 (2016)CrossRefGoogle Scholar
  8. 8.
    Gopi, K.R.; Nayaka, H.S.; Sahu, S.: Microstructural evolution and strengthening of AM90 magnesium alloy processed by ECAP. Arab. J. Sci. Eng. 42(11), 4635–4647 (2017)CrossRefGoogle Scholar
  9. 9.
    Gopi, K.R.; Nayaka, H.S.; Sahu, S.: Wear properties of ECAP-processed AM80 magnesium alloy. J. Mater. Eng. Perform. 26(7), 3399–3409 (2017)CrossRefGoogle Scholar
  10. 10.
    Zehetbauer, Y.T.; Zhu, M.J.: Bulk Nanostrucutred Materials. Wiley, Weinheim (2009)CrossRefGoogle Scholar
  11. 11.
    Mordike, B.L.; Ebert, T.: Magnesium properties-applications-potential. Mater. Sci. Eng. A 302(1), 37–45 (2001)CrossRefGoogle Scholar
  12. 12.
    Anne, G.; Ramesh, M.R.; Nayaka, H.S.; Arya, S.B.; Sahu, S.: Development and properties evaluation of Mg–6% Zn/Al multilayered composites processed by accumulative roll bonding. J. Mater. Res. 32(12), 2249–2257 (2017)CrossRefGoogle Scholar
  13. 13.
    Anne, G.; Ramesh, M.R.; Nayaka, H.S.; Arya, S.B.; Sahu, S.: Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg–2%Zn/Al–7075 multilayered composite. J. Mater. Eng. Perform. 26(4), 1726–1734 (2017)CrossRefGoogle Scholar
  14. 14.
    Anne, G.; Ramesh, M.R.; Nayaka, H.S.; Arya, S.B.; Sahu, S.: Development and characteristics of accumulative roll bonded Mg–Zn/Ce/Al hybrid composite. J. Alloys Compd. 724, 146–154 (2017)CrossRefGoogle Scholar
  15. 15.
    Hoche, H.; Blawert, C.; Broszeit, E.; Berger, C.: Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91. Surf. Coat. Technol. 193(1), 223–229 (2005)CrossRefGoogle Scholar
  16. 16.
    Watanabe, K.; Matsuda, K.; Gonoji, T.; Kawabata, T.; Sakakibara, K.; Sanpei, Y.; Saikawa, S.; Ikeno, S.: Effect of casting method and Al contents on microstructure in AM-Type magnesium alloys. Mater. Sci. Forum 654, 663–666 (2010)CrossRefGoogle Scholar
  17. 17.
    Avedessian, M.M.; Baker, H.: Magnesium and Magnesium Alloys, p. 14. ASM International, Materials Park (1999)Google Scholar
  18. 18.
    Minarik, P.; Kral, R.; Janecek, M.: Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl. Surf. Sci. 281, 44–48 (2013)CrossRefGoogle Scholar
  19. 19.
    Xin, L.I.; Jiang, J.H.; Zhao, Y.H.; Wen, D.J.; Zhu, Y.T.: Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy. Trans. Nonferrous Met. Soc. China 25(12), 3909–3920 (2015)CrossRefGoogle Scholar
  20. 20.
    Orlov, D.; Ralston, K.D.; Birbilis, N.; Estrin, Y.: Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59(15), 6176–6186 (2011)CrossRefGoogle Scholar
  21. 21.
    Jiang, J.; Aibin, M.A.; Saito, N.; Shen, Z.; Song, D.; Lu, F.; Nishida, Y.; Yang, D.; Lin, P.: Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP. J. Rare Earths 27(5), 848–852 (2009)CrossRefGoogle Scholar
  22. 22.
    Song, D.; Ma, A.; Jiang, J.; Lin, P.; Yang, D.; Fan, J.: Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 52(2), 481–490 (2010)CrossRefGoogle Scholar
  23. 23.
    Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F.: Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 53(1), 362–373 (2011)CrossRefGoogle Scholar
  24. 24.
    Song, G.; Atrens, A.: St. John, D.: An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. Proceedings of magnesium technology 2001, TMS Annual Meeting, pp. 255-262. New Orleans, LA, 11–15 Feb 2001Google Scholar
  25. 25.
    Song, G.; Atrens, A.: Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater. 5(12), 837–858 (2003)CrossRefGoogle Scholar
  26. 26.
    ASM International, Metals Handbook, Corrosion, vol.13, 9th edn. ASM International (1987)Google Scholar
  27. 27.
    Jafarian, H.; Livar, J.H.; Razavi, S.H.: Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding. Compos. B 77, 84–92 (2015)CrossRefGoogle Scholar
  28. 28.
    Akbaripanah, F.; Fereshteh-Saniee, F.; Mahmudi, R.; Kim, H.K.: The influences of extrusion and equal channel angular pressing (ECAP) processes on the fatigue behavior of AM60 magnesium alloy. Mater. Sci. Eng. A 565, 308–316 (2013)CrossRefGoogle Scholar
  29. 29.
    Sharifzadeh, M.; Ansari, M.A.; Narvan, M.; Behnagh, R.A.; Araee, A.; Givi, M.K.B.: Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion. Trans. Nonferrous Met. Soc. China 25(6), 1847–1855 (2015)CrossRefGoogle Scholar
  30. 30.
    Ralston, K.D.; Birbilis, N.: Effect of grain size on corrosion: a review. Corrosion 66(7), 075005–075013 (2010)CrossRefGoogle Scholar
  31. 31.
    Lin, Y.; Singh, A.; Ebenso, E.E.; Wu, Y.; Zhu, C.; Zhu, H.: Effect of poly(methyl methacrylate-co-Nvinyl-2-pyrrolidone) polymer on J55 steel corrosion in 3.5% NaCl solution saturated with \(\text{ CO }_{2}\). J. Taiwan Inst. Chem. Eng. 46, 214–222 (2015)CrossRefGoogle Scholar
  32. 32.
    Cao, C.N.: On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-I. One state variable besides electrode potential. Electrochim. Acta 35(5), 831–836 (1990)CrossRefGoogle Scholar
  33. 33.
    Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.; Feliu Jr., S.: Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim. Acta 53(27), 7890–7902 (2008)CrossRefGoogle Scholar
  34. 34.
    Wang, L.; Shinohara, T.; Zhang, B.P.: Corrosion behavior of AZ31 magnesium alloy in dilute sodium chloride solutions. Zairyo-to-Kankyo 58(3), 105–110 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • K. R. Gopi
    • 1
  • H. Shivananda Nayaka
    • 1
  • Sandeep Sahu
    • 2
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations