Skip to main content
Log in

Experimental and Analytical Study of Impact Failure Strength of Steel Hybrid Fibre Reinforced Concrete Subjected to Freezing and Thawing Cycles

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an experimental campaign was carried out to assess the impact failure strength of steel hybrid fibre reinforced concrete (SHFRC) subjected to freezing–thawing cycles in water containing 4.0% solution of NaCl. For this purpose, six different concrete mixtures were prepared by adding long and short steel fibres at 2.0% volume of concrete. The proportion of long to short straight steel fibres, also called as the hybrid fibre coefficient (HFC) of SHFRC, used in this study are 0, 0.25, 0.5, 0.75 and 1.0. All the specimens were subjected to freezing–thawing of 0, 25, 50, 75, 100, 125, 150, 175 and 200 cycles followed by impact test using pendulum impact device. Significant weight loss was observed in SHFRC specimens exposed to freezing–thawing cycles (0–200). Also, an analytical model was developed to assess the impact failure strength of SHFRC subjected to freezing–thawing cycles. The results revealed that when the number of freezing–thawing cycles were increased, the loss in weight of SHFRC specimens was increased and the impact failure strength of SHFRC specimens was decreased. The impact failure strength of SHFRC incorporating higher amount of long fibres was higher compared to short fibres, which implies that long fibre plays a predominant role in enhancing its impact failure strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, S.H.; Kim, D.J.; Kim, S.W.: Investigating the impact resistance of ultra-high-performance fibre reinforced concrete using an improved strain energy impact test machine. Constr. Build. Mater. 125, 145–159 (2016)

    Article  Google Scholar 

  2. Booker, P.M.; Cargile, J.D.; Kistler, B.L.; Saponara, V.: Investigation on the response of segmented concrete targets to projectile impacts. Int. J. Impact Eng. 36, 926–939 (2009)

    Article  Google Scholar 

  3. Wu, H.; Fang, Q.; Chen, X.W.; Gong, Z.M.; Liu, J.Z.: Projectile penetration of ultrahigh performance cement based composites at 510–1320 m/s. Constr. Build. Mater. 74, 188–200 (2015)

    Article  Google Scholar 

  4. Wen, H.M.; Xian, Y.X.: A unified approach for concrete impact. Int. J. Impact Eng. 77, 84–96 (2015)

    Article  Google Scholar 

  5. Sovjak, R.; Vavriník, T.; Zatloukal, J.; Maca, P.; Micunek, T.; Frydryn, M.: Resistance of slim UHPFRC targets to projectile impact using in-service bullets. Int. J. Impact Eng. 76, 166–177 (2015)

    Article  Google Scholar 

  6. Ding, Y.; Li, D.; Zhang, Y.; Azevedo, C.: Experimental investigation on the composite effect of steel rebars and macro fibres on the impact behavior of high performance self-compacting concrete. Constr. Build. Mater. 125, 145–159 (2016)

    Article  Google Scholar 

  7. Mastali, M.; Dalvand, A.; Sattarifard, A.: The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fibre with different lengths and dosages. Compos. B 112, 74–92 (2017)

    Article  Google Scholar 

  8. Pavlovic, A.; Fragassa, C.; Disic, A.: Comparative numerical and experimental study of projectile impact on reinforced concrete. Compos. B 108, 122–130 (2017)

    Article  Google Scholar 

  9. Rajput, A.; Iqbal, M.A.: Impact behavior of plain, reinforced and prestressed concrete targets. Mater. Design 114, 459–474 (2017)

    Article  Google Scholar 

  10. Ding, Y.; Kusterle, W.: Comparative study between steel fibre reinforced concrete and steel mesh reinforced concrete at early ages in the panel tests. Cem. Concr. Res. 29, 1827–1834 (1999)

    Article  Google Scholar 

  11. Altun, F.; Haktanir, T.; Ari, K.: Effects of steel fibre addition on mechanical properties of concrete and RC beams. Constr. Build. Mater. 21, 654–661 (2007)

    Article  Google Scholar 

  12. Mohannadi, Y.; Carkon-Azad, R.; Singh, S.P.: Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio. Constr. Build. Mater. 23, 183–189 (2009)

    Article  Google Scholar 

  13. Mahmoud, N.; Afroughsabet, V.: Combined effect of silica fume and steel fibres on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 37, 879–886 (2010)

    Article  Google Scholar 

  14. Nia, A.A.; Hedayatian, M.; Nili, M.: An experimental and numerical study on how steel and polypropylene fibres affect the impact resistance in fibre reinforced concrete. Int. J. Impact Eng. 46(4), 62–73 (2012)

    Google Scholar 

  15. Almusallam, T.H.; Abadel, A.A.; Al-Salloum, Y.A.; Siddiqui, N.A.; Abbas, H.: Effectiveness of hybrid-fibres in improving the impact resistance of RC slabs. Int. J. Impact Eng. 81, 61–73 (2015)

    Article  Google Scholar 

  16. Yooa, D.Y.; Banthia, N.; Kim, S.W.; Yoon, Y.S.: Response of ultra-high-performance fibre-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading. Composite Struct. 126, 233–245 (2015)

    Article  Google Scholar 

  17. Fujikake, K.; Senga, T.; Ueda, N.; Ohno, T.; Katagiri, M.: Study on impact response of reactive powder concrete beam and its analytical model. J. Adv. Concr. Technol. 4(1), 99–108 (2006)

    Article  Google Scholar 

  18. Hassan, A.M.T.; Jones, S.W.; Mahmud, G.H.: Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra-high performance fibre reinforced concrete (UHPFRC). Constr. Build. Mater. 37, 874–82 (2012)

    Article  Google Scholar 

  19. Kang, S.T.; Kim, J.K.: The relation between fibre orientation and tensile behavior in an ultra-high performance fibre reinforced cementitious composites (UHPFRCC). Cem. Concr. Res. 41, 1001–14 (2011)

    Article  Google Scholar 

  20. Kang, S.T.; Kim, J.K.: Numerical simulation of the variation of fibre orientation distribution during flow molding of ultra-high performance cementitious composites (UHPCC). Cem. Concr. Compos. 34, 208–17 (2012)

    Article  Google Scholar 

  21. Yang, I.H.; Joh, C.; Kim, B.S.: Structural behavior of ultra-high performance concrete beams subjected to bending. Eng. Struct. 32, 3478–87 (2010)

    Article  Google Scholar 

  22. Sirijaroonchai, K.; El-Tawil, S.; Parra-Montesinos, G.: Behavior of high performance fibre reinforced cement composites under multi-axial compressive loading. Cem. Concr. Compos. 32, 62–72 (2010)

    Article  Google Scholar 

  23. Millard, S.G.; Molyneaux, T.C.K.; Barnett, S.J.; Gao, X.: Dynamic enhancement of blast resistant ultra-high performance fibre-reinforced concrete under flexural and shear loading. Int. J. Impact Eng. 37, 405–13 (2010)

    Article  Google Scholar 

  24. Mao, L.; Barnett, S.; Begg, D.; Schleyer, G.; Wight, G.: Numerical simulation of ultrahigh performance fibre reinforced concrete panel subjected to blast loading. Int. J. Impact Eng. 64, 91–100 (2014)

    Article  Google Scholar 

  25. Wu, C.; Oehlers, D.J.; Rebentrost, M.; Leach, J.; Whittaker, A.S.: Blast testing of ultrahigh performance fibre and FRP-retrofitted concrete slabs. Eng. Struct. 31, 2060–9 (2009)

    Article  Google Scholar 

  26. Yi, N.H.; Kim, J.H.J.; Han, T.S.; Cho, Y.G.; Lee, J.H.: Blast-resistant characteristics of ultrahigh strength concrete and reactive powder concrete. Constr. Build. Mater. 28, 694–707 (2012)

    Article  Google Scholar 

  27. Rong, Z.; Sun, W.; Zhang, Y.: Dynamic compression behavior of ultra-high performance cement based composites. Int. J. Impact Eng. 37, 515–20 (2010)

    Article  Google Scholar 

  28. Rong, Z.; Sun, W.: Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites. Constr. Build. Mater. 31, 168–73 (2012)

    Article  Google Scholar 

  29. Bragov, A.M.; Yuv, P.; Karihaloo, B.L.; Ayu, K.; Lamzin, D.A.; Lomunov, A.K.: Dynamic strengths and toughness of an ultra-high performance fibre reinforced concrete. Eng. Fract. Mech. 110, 477–88 (2013)

    Article  Google Scholar 

  30. Caverzan, A.; Cadoni, E.; Prisco, M.: Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure. Mech. Mater. 59, 87–109 (2013)

    Article  Google Scholar 

  31. Tran, T.K.; Kim, D.J.: High strain rate effects on direct tensile behavior of high performance fibre reinforced cementitious composites. Cem. Concr. Compos. 45, 186–200 (2014)

    Article  Google Scholar 

  32. Wang, S.; Zhang, M.; Quek, S.: Mechanical behavior of fibre-reinforced high strength concrete subjected to high strain-rate compressive loading. Constr. Build. Mater. 31, 1–11 (2012)

    Article  Google Scholar 

  33. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T.: Comparative flexural behavior of hybrid ultra-high performance fibre reinforced concrete with different macro fibres. Constr. Build. Mater. 25, 4144–55 (2011)

    Article  Google Scholar 

  34. Niu, D.T.; Jiang, L.; Bai, B.; Miao, Y.Y.: Study of the performance of steel fibre reinforced concrete to water and salt freezing condition. Mater. Design 44, 267–273 (2013)

    Article  Google Scholar 

  35. Attila, E.; Erika, C.; Katalin, K.; Adorján, B.; Olivér, F.: Deterioration of steel fibre reinforced concrete by freeze-thaw and de-icing salts. Concr. Struct. 9, 33–44 (2008)

    Google Scholar 

  36. Liu, K.; Yan, J.; Hua, Q.; Sun, Y.; Zou, C.: Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete. Constr. Build. Mater. 106, 264–273 (2016)

    Article  Google Scholar 

  37. Setzer, M.J.: Micro-ice-lens formation in porous solid. J. Colloid Interface Sci. 243, 193–201 (2001)

    Article  Google Scholar 

  38. Sun, Z.; Scherer, G.W.: Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 40, 260–270 (2010)

    Article  Google Scholar 

  39. Yang, Q.B.; Zhou, B.R.: Effect of steel fiber on the deicer-scaling resistance of concrete. Cem. Concr. Res. 35(12), 2360–2363 (2005)

    Article  Google Scholar 

  40. Zhang, W.M.; Xu, H.Z.; Liu, Y.Z.; Ba, H.J.: Chloride diffusion coefficient and service life prediction of concrete subjected to repeated loadings. Mag. Concr. Res. 65(3), 185–192 (2013)

    Article  Google Scholar 

  41. Miao, C.W.; Mu, R.; Tian, Q.; Sun, W.: Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement. Cem. Concr. Res. 32(1), 31–34 (2002)

    Article  Google Scholar 

  42. IS: 3812-2003. Indian standard, pulverized fuel ash—specification part 1 for use as pozzolana in cement. Cement mortar and concrete (Second revision)

  43. Yu, R.; Spiesz, P.; Brouwers, H.J.H.: Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): experimentsand modeling. Constr. Build. Mater. 68, 158–171 (2014)

    Article  Google Scholar 

  44. ASTM C666/C666M: Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. American Society for Testing and Materials, West Conshohocken (2008)

  45. Lindmark, S.: Mechanisms of Salt Frost Scaling on Portland Cement-Bound Materials: Studies and Hypothesis. Lund University, Sweden (1998)

    Google Scholar 

  46. Marchand, J.; Pigeon, M.; Bager, D.; Talbot, C.: Influence of chloride solution concentration on deicer salt scaling deterioration of concrete. ACI Mater. J. 96(4), 429–435 (1999)

    Google Scholar 

  47. Persson, B.: Internal frost resistance and salt frost scaling of self-compacting concrete. Cem. Concr. Res. 33(3), 373–379 (2003)

    Article  Google Scholar 

  48. Mehta, P.K.; Monteiro Paulo, J.M.: Concrete: Microstructure, Properties, and Materials, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  49. ASTM E23: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, American Society for Testing and Materials. West Conshohocken (1992)

  50. Zhang, W.; Chen, S.; Zhang, N.; Zhou, Y.: Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze–thaw cycles in NaCl solution. Constr. Build. Mater. 101, 522–526 (2015)

    Article  Google Scholar 

  51. Sun, W.; Mu, R.; Luo, X.; Miao, C.W.: Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete. Cem. Concr. Res. 32(12), 1859–1864 (2002)

    Article  Google Scholar 

  52. Niu, D.T.; Jiang, L.; Bai, B.; Miao, Y.Y.: Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater. Design 44, 267–273 (2013)

    Article  Google Scholar 

  53. Burlion, N.: Compaction des betons: elements de modelisation et caracterisation experimentale. Ph.D. dissertation, LMT, ENS de Cachan, France (1997)

  54. Süper, W.: Rechnerische Untersuchung stoartig beansprucher stahlbetonplatten. Forschg. Kolloquim Dortmund, Lehrstuhl für Beton-und stahlbetonbau (1980)

  55. Murali, G.; Santhi, A.S.; Mohanganesh, G.: Impact resistance and strength reliability of fiber-reinforced concrete in bending under drop weight impact load. Int. J. Tech. 5(2), 111–120 (2014)

    Article  Google Scholar 

  56. Murali, G.; Santhi, A.S.; Mohanganesh, G.: Empirical relationship between the impact energy and compressive strength for fiber reinforced concrete. J. Sci. Ind. Res. 73, 469–473 (2014)

    Google Scholar 

  57. Murali, G.; Santhi, A.S.; Mohanganesh, G.: Effect of crimped and hooked end steel fibres on the impact resistance of concrete. J. Appl. Sci. Eng. 17(3), 259–266 (2014)

    Google Scholar 

  58. Murali, G.; Santhi, A.S.; Mohanganesh, G.: Loss of mechanical properties of fiber-reinforced concrete exposed to impact load. Roman. J. Mater. 46(4), 491–496 (2016)

    Google Scholar 

  59. Favre, J.P.; Desarmot, G.; Sudre, O.; Vassel, A.: Were McGarry or Shiriajeva right to measure glass-fiber adhesion? Compos. Interfaces 4, 313–26 (1997)

    Article  Google Scholar 

  60. Kanda, T.; Li, V.C.: Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. J. Mater. Civil. Eng. 10, 5–13 (1998)

    Article  Google Scholar 

  61. sueh, C.H.: Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites. Acta Mater. 44(6), 2211–2216 (1996)

    Article  Google Scholar 

  62. Xu, B.; Toutanji, H.A.; Gilbert, J.: Impact resistance of poly (vinyl alcohol) fiber reinforced high-performance organic aggregate cementitious material. Cem. Concr. Res. 40, 347–51 (2010)

    Article  Google Scholar 

  63. Leung, C.K.Y.; Geng, Y.: Effect of lateral stresses on fiber debonding/pull-out. Compos. Eng. 5(10), 1331–48 (1995)

    Article  Google Scholar 

  64. Soetens, T.; Gysel, A.V.; Taerwe, M.L.: A semi-analytical model to predict the pullout behaviour of inclined hooked-end steel fibres. Constr. Build. Mater. 43, 253–65 (2013)

    Article  Google Scholar 

  65. Alwan, J.M.; Naaman, A.E.; Hansen, W.: Pull-out work of steel fibers from cementitious composites: analytical investigation. Cem. Concr. Compos. 13(4), 247–55 (1991)

    Article  Google Scholar 

  66. Chawla, K.K.: Composite Materials Science and Engineering, pp. 234–6. Springer-Verlag, New York (1997)

    Google Scholar 

  67. Kanda, T.; Li, V.C.: Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Tech. 4(1), 59–72 (2006)

    Article  Google Scholar 

  68. IS: 456-2000. Indian Standard Plain and reinforced concrete—code of practice (Fourth Revision)

Download references

Acknowledgements

The authors are grateful to the School of Civil Engineering at the SASTRA University for their support. The authors also like to thank the technical staff of School of Civil Engineering at the SASTRA University for their support with preparation and testing of specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, G., Vinodha, E. Experimental and Analytical Study of Impact Failure Strength of Steel Hybrid Fibre Reinforced Concrete Subjected to Freezing and Thawing Cycles. Arab J Sci Eng 43, 5487–5497 (2018). https://doi.org/10.1007/s13369-018-3202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3202-6

Keywords

Navigation