Skip to main content
Log in

Using Unsupervised Deep Learning for Automatic Summarization of Arabic Documents

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Traditional Arabic text summarization (ATS) systems are based on bag-of-words representation, which involve a sparse and high-dimensional input data. Thus, dimensionality reduction is greatly needed to increase the power of features discrimination. In this paper, we present a new method for ATS using variational auto-encoder (VAE) model to learn a feature space from a high-dimensional input data. We explore several input representations such as term frequency (tf), tf-idf and both local and global vocabularies. All sentences are ranked according to the latent representation produced by the VAE. We investigate the impact of using VAE with two summarization approaches, graph-based and query-based approaches. Experiments on two benchmark datasets specifically designed for ATS show that the VAE using tf-idf representation of global vocabularies clearly provides a more discriminative feature space and improves the recall of other models. Experiment results confirm that the proposed method leads to better performance than most of the state-of-the-art extractive summarization approaches for both graph-based and query-based summarization approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)

    Article  MathSciNet  Google Scholar 

  2. Ferreira, R.; de Souza Cabral, L.; Freitas, F.; Lins, R.D.; de Frana Silva, G.; Simske, S.J.; Favaro, L.: A multi-document summarization system based on statistics and linguistic treatment. Expert Syst. Appl. 41(13), 5780–5787 (2014)

    Article  Google Scholar 

  3. Ferreira, R.; De Souza, L.; Dueire, R.; et al.: Assessing sentence scoring techniques for extractive text summarization. Expert Syst. Appl. 40(14), 5755–5764 (2013). https://doi.org/10.1016/j.eswa.2013.04.023

    Article  Google Scholar 

  4. Erkan, G.; Radev, D.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

    Article  Google Scholar 

  5. Baralis, E.; Cagliero, L.; Mahoto, N.; Fiori, A.: GRAPHSUM : discovering correlations among multiple terms for graph-based summarization. Inf. Sci. 249, 96–109 (2013). https://doi.org/10.1016/j.ins.2013.06.046

    Article  MathSciNet  Google Scholar 

  6. Mihalcea, R.; Tarau, P.: TextRank: Bringing order into texts. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Spain, pp. 404–411 (2004)

  7. Fattah, M.A.: A hybrid machine learning model for multi-document summarization. Appl. Intell. 40(4), 592–600 (2014). https://doi.org/10.1007/s10489-013-0490-0

    Article  Google Scholar 

  8. Alguliyev, R.M.; Aliguliyev, R.M.; Isazade, N.R.: An unsupervised approach to generating generic summaries of documents. Appl. Soft Comput. 34, 236–250 (2015). https://doi.org/10.1016/j.asoc.2015.04.050

    Article  Google Scholar 

  9. Yang, L.; Cai, X.; Zhang, Y.; Shi, P.: Enhancing sentence-level clustering with ranking-based clustering framework for theme-based summarization. Inf. Sci. 260, 37–50 (2014). https://doi.org/10.1016/j.ins.2013.11.026

    Article  Google Scholar 

  10. Yousefi-Azar, M.; Hamey, L.: Text summarization using unsupervised deep learning. Expert Syst. Appl. 68, 93–105 (2017). https://doi.org/10.1016/j.eswa.2016.10.017

    Article  Google Scholar 

  11. Akbarizadeh, G.: Segmentation of SAR satellite images using cellular learning automata and adaptive chains. J. Remote Sens. Technol. pp. 44–51 (2013). https://doi.org/10.18005/jrst0102003

  12. Akbarizadeh, G.; Moghaddam, A.E.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inform. 6(2), 477–483 (2016). https://doi.org/10.1166/jmihi.2016.1720

    Article  Google Scholar 

  13. Rahmani, M.; Akbarizadeh, G.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vision 9(5), 629–638 (2015). https://doi.org/10.1049/iet-cvi.2014.0295

    Article  Google Scholar 

  14. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, Nevada, USA, pp. 1090–1098 (2012)

  16. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the 2nd International Conference On Learning Representation (ICLR2014), Banff, Canada (2014)

  17. Donahue, J.; Anne Hendricks, L.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 677–691 (2017)

    Article  Google Scholar 

  18. Er, M.J.; Zhang, Y.; Wang, N.; Pratama, M.: Attention pooling-based convolutional neural network for sentence modelling. Inf. Sci. 373, 388–403 (2016). https://doi.org/10.1016/j.ins.2016.08.084

    Article  Google Scholar 

  19. Li, F.; Zhang, M.; Tian, B.; Chen, B.; Fu, G.; Ji, D.: Recognizing irregular entities in biomedical text via deep neural networks. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.06.009

    Article  Google Scholar 

  20. Ayinde, B.O.; Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2017). https://doi.org/10.1109/tnnls.2017.2747861

    Article  Google Scholar 

  21. Firat, O.; Cho, K.; Sankaran, B.; Yarman Vural, F.T.; Bengio, Y.: Multi-way, multilingual neural machine translation. Comput. Speech Lang. 45, 236–252 (2017). https://doi.org/10.1016/j.csl.2016.10.006

    Article  Google Scholar 

  22. Zhong, Sh; Liu, Y.; Li, B.; Long, J.: Query-oriented unsupervised multi-document summarization via deep learning model. Expert Syst. Appl. 42(21), 8146–8155 (2015)

    Article  Google Scholar 

  23. Kingma, D.P.; Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations, Banff, Canada (2014)

  24. Li, H.; Misra, S.: Prediction of subsurface NMR T2 distributions in a shale petroleum system using variational autoencoder-based neural networks. IEEE Geosci. Remote Sens. Lett. 14(12), 2395–2397 (2017). https://doi.org/10.1109/lgrs.2017.2766130

    Article  Google Scholar 

  25. Akbarizadeh, G.; Tirandaz, Z.; Kooshesh, M.: A new curvelet based texture classification approach for land cover recognition of SAR satellite images. Malays. J. Comput. Sci. 27(3), 218–239 (2014)

    Google Scholar 

  26. Ahmadi, N.; Akbarizadeh, G.: Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/PSO. IET Biom. (2017). https://doi.org/10.1049/iet-bmt.2017.0041

    Article  Google Scholar 

  27. Wang, L.; Zhang, J.; Liu, P.; Choo, K.-K.R.; Huang, F.: Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft. Comput. 21(1), 213–221 (2016). https://doi.org/10.1007/s00500-016-2246-3

    Article  MATH  Google Scholar 

  28. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning—ICML ’08. https://doi.org/10.1145/1390156.1390294 (2008)

  29. Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T.: Audio-visual speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2014). https://doi.org/10.1007/s10489-014-0629-7

    Article  Google Scholar 

  30. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  31. Kim, E.; Corte-Real, M.; Baloch, Z.: A deep semantic mobile application for thyroid cytopathology. In: Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations (2016). https://doi.org/10.1117/12.2216468

  32. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  33. Gulshan, V.; Peng, L.; Coram, M.; et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  34. Edmundson, H.P.: New methods in automatic extracting. J. ACM 16(2), 264–285 (1969)

    Article  Google Scholar 

  35. Heu, J.U.; Qasim, I.; Lee, D.H.: FoDoSu: multi-document summarization exploiting semantic analysis based on social Folksonomy. Inf. Process. Manag. 51(1), 212–225 (2015). https://doi.org/10.1016/j.ipm.2014.06.003

    Article  Google Scholar 

  36. Fang, H.; Lu, W.; Wu, F.; Zhang, Y.; Shang, X.; Shao, J.; Zhuang, Y.: Topic aspect-oriented summarization via group selection. Neurocomputing 149, 1613–1619 (2015). https://doi.org/10.1016/j.neucom.2014.08.031

    Article  Google Scholar 

  37. Denil, M.; Demiraj, A.; de Freitas, N.: Extraction of salient sentences from labelled documents. arXiv preprint arXiv:1412.6815 (2014)

  38. Ha, J.W.; Kang, D.; Pyo, H.; Kim, J.: News2Images: automatically summarizing news articles into image-based contents via deep learning. In: 3rd International Workshop on News Recommendation and Analytics (INRA 2015) (with RECSYS 2015), Vienna, Austria (2015)

  39. Cao, Z.; Wei, F.; Dong, L.; Li, S.; Zhou, M.: Ranking with recursive neural networks and its application to multi-document summarization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, pp. 2153–2159 (2015)

  40. Rezende, D.J.; Mohamed, S.; Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on International Conference on Machine Learning (ICML’14), vol. 32, Beijing, China, pp. 1278–1286 (2014)

  41. Hinton, G.E.; Osindero, S.; The, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  42. Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  43. Kingma, D.P.; Mohamed, S.; Rezende, D.J.; Welling, M.: Semi-supervised learning with deep generative models. In: Proceedings of Neural Information Processing Systems (NIPS’14), pp. 3581–3589 (2014)

  44. El-Haj, M.; Kruschwitz, U.; Fox, C.: Using mechanical Turk to create a corpus of Arabic summaries. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC), Valletta, Malta, pp. 36–39, in the Language Resources (LRs) and Human Language Technologies (HLT) for Semitic Languages workshop held in conjunction with the 7th international language resources and evaluation conference (2010)

  45. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of workshop on text summarization branches out, post-conference workshop of ACL, pp. 74–81 (2004)

  46. Mashechkin, I.V.; Petrovskiy, M.I.; Popov, D.S.; Tsarev, D.V.: Automatic text summarization using latent semantic analysis. Program. Comput. Softw. 37(6), 299–305 (2011). https://doi.org/10.1134/s0361768811060041

    Article  MathSciNet  MATH  Google Scholar 

  47. Brin, S.; Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/s0169-7552(98)00110-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Alami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alami, N., En-nahnahi, N., Ouatik, S.A. et al. Using Unsupervised Deep Learning for Automatic Summarization of Arabic Documents. Arab J Sci Eng 43, 7803–7815 (2018). https://doi.org/10.1007/s13369-018-3198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3198-y

Keywords

Navigation