Modeling and Analysis of Performance and Energy Consumption in Cloud Data Centers

  • Said El Kafhali
  • Khaled Salah
Research Article - Computer Engineering and Computer Science


Recently, the deployment of cloud data centers (CDCs) and the adoption of cloud technologies have transformed the way we do computation, storage and networking. Typically in a CDC, virtual machines (VMs) are allocated to physical machines. Estimating correctly the number of needed VMs to meet a given workload and QoS parameters is important for cost and resource efficiency. In this paper, we develop a queuing model to aid in studying and analyzing performance in CDC. We model the CDC platforms with an open queuing system that can be used to estimate the expected quality of service (QoS) parameters such as the throughput, the drop rate, the CPU utilization and the response time. In addition, we present an energy consumption model to study and estimate the energy consumption in the CDC. We give numerical examples to show how the proposed model estimates the number of needed VMs to meet a given level of QoS parameters. The results obtained from our analysis as well as the simulation models show that the proposed model is able to correctly and effectively estimate the number of VM instances required to achieve QoS targets under different workload conditions.


Cloud data center Virtualization Quality of service Queuing theory Performance analysis Energy consumption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voorsluys, W.; Broberg, J.; Buyya, R.: Introduction to cloud computing. Cloud computing: principles and paradigms, pp. 1–44 (2011)Google Scholar
  2. 2.
    Furht, B.: Cloud Computing Fundamentals. Handbook of Cloud Computing, pp. 3–19. Springer, US (2010)Google Scholar
  3. 3.
    El Kafhali, S.; Salah, K.: Performance analysis of multi-core VMs hosting cloud SaaS applications. Comput. Stand. Interfaces 55, 126–135 (2018)CrossRefGoogle Scholar
  4. 4.
    Huang, W.; Ganjali, A.; Kim, B.H.; Oh, S.; Lie, D.: The state of public infrastructure-as-a-service cloud security. ACM Comput. Surv. 47(4), 68 (2015)CrossRefGoogle Scholar
  5. 5.
    Alam, A.F.; Soltanian, A.; Yangui, S.; Salahuddin, M.A.; Glitho, R.; Elbiaze, H.: A cloud platform-as-a-service for multimedia conferencing service provisioning. In: Proceedings of the 21st IEEE Symposium on Computers and Communications, IEEE ISCC’16, Messina, Italy (2016)Google Scholar
  6. 6.
    Schafer, J.; Lichter, H.: Changes in requirements engineering after migrating to the software as a service model. In: Full-Scale Software Engineering/Current Trends in Release Engineering, pp. 25–30 (2016)Google Scholar
  7. 7.
    Amazon, E.: Amazon elastic compute cloud. Retrieved Feb, Vol. 10 (2009)Google Scholar
  8. 8.
    Ghosh, R.; Trivedi, K.S.; Naik, V.K.; Kim, D.S.: End-to-end performability analysis for infrastructure-as-a-service cloud: an interacting stochastic models approach. In: Proceedings of the 16th Pacific Rim International Symposium on Dependable Computing, PRDC’10, Tokyo, Japan, pp. 125–132 (2010)Google Scholar
  9. 9.
    Jennings, B.; Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23(3), 567–619 (2015)CrossRefGoogle Scholar
  10. 10.
    Kim, W.: Cloud computing: today and tomorrow. J. Object Technol. 8(1), 65–72 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, H.; Yao, D.D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization, vol. 46. Springer, Berlin (2013)zbMATHGoogle Scholar
  12. 12.
    Khojasteh, H.; Misic, J.; Misic, V.B.: Characterizing energy consumption of iaas clouds in non-saturated operation. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), INFOCOM’14, Toronto, Canada, pp. 398–403 (2014)Google Scholar
  13. 13.
    Masdari, M.; Nabavi, S.S.; Ahmadi, V.: An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput. Appl. 66, 106–127 (2016)CrossRefGoogle Scholar
  14. 14.
    Wen, Y.-F.: Energy-aware dynamical hosts and tasks assignment for cloud computing. J. Syst. Softw. 115, 144–156 (2016)CrossRefGoogle Scholar
  15. 15.
    Piraghaj, S.F.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R.: Efficient virtual machine sizing for hosting containers as a service (services 2015). In: Proceedings of the IEEE 11th World Congress on Services, SERVICES’15, New York, pp. 31–38 (2015)Google Scholar
  16. 16.
    Xiao, Z.; Jiang, J.; Zhu, Y.; Ming, Z.; Zhong, S.; Cai, S.: A solution of dynamic vms placement problem for energy consumption optimization based on evolutionary game theory. J. Syst. Softw. 101, 260–272 (2015)CrossRefGoogle Scholar
  17. 17.
    Li, K.: Power and performance management for parallel computations in clouds and data centers. J. Comput. Syst. Sci. 82(2), 174–190 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Khazaei, H.; Misic, J.; Misic, V.B.: Performance of an iaas cloud with live migration of virtual machines. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM), GLOBECOM’13, Aalanta, USA, pp. 2289–2293 (2013)Google Scholar
  19. 19.
    Xiong, K.; Perros, H.: Service performance and analysis in cloud computing. In: Proceedings of the 1st IEEE Congress on Services, SERVICES’09, Los Angeles, California, USA, pp. 693–700 (2009)Google Scholar
  20. 20.
    Guo, L.; Yan, T.; Zhao, S.; Jiang, C.: Dynamic performance optimization for cloud computing using m/m/m queueing system. J. Appl. Math. 2014 (2014)Google Scholar
  21. 21.
    Bai, W.-H.; Xi, J.-Q.; Zhu, J.-X.; Huang, S.-W.: Performance analysis of heterogeneous data centers in cloud computing using a complex queuing model. Math. Probl. Eng. 2015 (2015)Google Scholar
  22. 22.
    El Kafhali, S.; Salah, K.: Stochastic modelling and analysis of cloud computing data center. In: 20th ICIN Conference Innovations in Clouds, Internet and Networks, IEEE, Paris, France, pp. 122–126 (2017)Google Scholar
  23. 23.
    Ghosh, R.; Longo, F.; Naik, V.K.; Trivedi, K.S.: Modeling and performance analysis of large scale iaas clouds. Future Gener. Comput. Syst. 29(5), 1216–1234 (2013)CrossRefGoogle Scholar
  24. 24.
    Ghosh, R.; Longo, F.; Xia, R.; Naik, V.K.; Trivedi, K.S.: Stochastic model driven capacity planning for an infrastructure-as-a-service cloud. IEEE Trans. Serv. Comput. 7(4), 667–680 (2014)CrossRefGoogle Scholar
  25. 25.
    Mondal, S.K.; Muppala, J.K.; Machida, F.: Virtual machine replication on achieving energy-efficiency in a cloud. Electronics 5(3), 37 (2016)CrossRefGoogle Scholar
  26. 26.
    Sun, G.; Liao, D.; Anand, V.; Zhao, D.; Yu, H.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)CrossRefGoogle Scholar
  27. 27.
    Cheikh, H.B.; Doncel, J.; Brun, O.; Prabhu, B.: Predicting response times of applications in virtualized environments. In: Proceedings of the 3rd Symposium on Network Cloud Computing and Applications, NCCA’14, Rome, pp. 83–90 (2014)Google Scholar
  28. 28.
    Nguyen, T.A.; Kim, D.S.; Park, J.S.: Availability modeling and analysis of a data center for disaster tolerance. Future Gener. Comput. Syst. 56, 27–50 (2016)CrossRefGoogle Scholar
  29. 29.
    Salah, K.; Elbadawi, K.; Boutaba, R.: An analytical model for estimating cloud resources of elastic services. J. Netw. Syst. Manag. 24(2), 285–308 (2016)CrossRefGoogle Scholar
  30. 30.
    Boru, D.; Kliazovich, D.; Granelli, F.; Bouvry, P.; Zomaya, A.Y.: Energy-efficient data replication in cloud computing datacenters. Cluster Comput. 18(1), 385–402 (2015)CrossRefGoogle Scholar
  31. 31.
    Katz, R.H.: Tech titans building boom. IEEE Spectr. 46(2), 40–54 (2009)CrossRefGoogle Scholar
  32. 32.
    Salah, K.; El Kafhali, S.: Performance modeling and analysis of hypoexponential network servers. J. Telecommun. Syst. 65(4), 717–728 (2017)CrossRefGoogle Scholar
  33. 33.
    Vilaplana, J.; Solsona, F.; Teixido, I.; Mateo, J.; Abella, F.; Rius, J.: A queuing theory model for cloud computing. J. Supercomput. 69(1), 492–507 (2014)CrossRefGoogle Scholar
  34. 34.
    Bolch, G.; de Greiner, S.; Meer, H.; Trivedi, K.S.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley, London (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    El Kafhali, S.; Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercomput. 73(12), 5261–5284 (2017)CrossRefGoogle Scholar
  36. 36.
    Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, Berlin (2013)Google Scholar
  37. 37.
    Dayarathna, M.; Wen, Y.; Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016)CrossRefGoogle Scholar
  38. 38.
    Semeraro, G.; Magklis, G.; Balasubramonian, R.; Albonesi, D.H.; Dwarkadas, S.; Scott, M.L.: Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In: Proceedings of the IEEE 8th International Symposium on High Performance Computer Architecture, HPCA’02, Cambridge, pp. 29–40 (2002)Google Scholar
  39. 39.
    Beloglazov, A.; Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGrid’10, Melbourne, Victoria, Australia, pp. 826–831 (2010)Google Scholar
  40. 40.
    Radhakrishnan, A.; Kavitha, V.: Energy conservation in cloud data centers by minimizing virtual machines migration through artificial neural network. Computing 98(11), 1185–1202 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C.: Optimal power allocation in server farms. In: ACM SIGMETRICS Performance Evaluation Review, SIGMETRICS’09, vol. 37, no. 1, pp. 157–168 (2009)Google Scholar
  42. 42.
    Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. Clust. Comput. 12(1), 1–15 (2009)CrossRefGoogle Scholar
  43. 43.
    Raghavendra, R.; Ranganathan, P.; Talwar, V.; Wang, Z.; Zhu, X.: No power struggles: coordinated multi-level power management for the data center. In: ACM SIGOPS Operating Systems Review, ASPLOS’08 vol. 42, no. 2, pp. 48–59 (2008)Google Scholar
  44. 44.
    Verma, A.; Ahuja, P.; Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware’08, Leuven, Belgium, pp. 243–264 (2008)Google Scholar
  45. 45.
    Awada, U.; Li, K.; Shen, Y.: Energy consumption in cloud computing data centers. Int. J. Cloud Comput. Serv. Sci. 3(3), 145–162 (2014)Google Scholar
  46. 46.
    Yeo, S.; Hossain, M.M.; Huang, J.-C.; Lee, H.-H.S.: Atac: Ambient temperature-aware capping for power efficient datacenters. In: Proceedings of the ACM Symposium on Cloud Computing, SoCC’14, Seattle, WAACM, pp. 1–14 (2014)Google Scholar
  47. 47.
    Mazzucco, M.; Dyachuk, D.; Dikaiakos, M.: Profit-aware server allocation for green internet services. In: Proceedings of the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication System, MASCOTS’10, Miami, Florida, USA, pp. 277–284 (2010)Google Scholar
  48. 48.
    Gandhi, A.; Harchol-Balter, M.; Adan, I.: Server farms with setup costs. Perform. Eval. 67(11), 1123–1138 (2010)CrossRefGoogle Scholar
  49. 49.
    Burnetas, A.; Economou, A.: Equilibrium customer strategies in a single server markovian queue with setup times. Queueing Syst. 56(3–4), 213–228 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Gandhi, A.; Harchol-Balter, M.: M/g/k with exponential setup, Tech. Rep. CMU-CS-09-166, School of Computer Science, Carnegie Mellon University (2009)Google Scholar
  51. 51.
    Nguyen, B.M.; Tran, D.; Nguyen, Q.: A strategy for server management to improve cloud service qos. In: Proceedings of the IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications, IEEE/ACM DS-RT’15, Chengdu, China, pp. 120–127 (2015)Google Scholar
  52. 52.
    Mazzucco, M.; Dyachuk, D.: Balancing electricity bill and performance in server farms with setup costs. Future Gener. Comput. Syst. 28(2), 415–426 (2012)CrossRefGoogle Scholar
  53. 53.
    Han, Z.; Tan, H.; Chen, G.; Wang, R.; Chen, Y.; Lau, F.: Dynamic virtual machine management via approximate markov decision process. In: Proceedings of the 35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM’16, San Francisco, CA, USA, pp .1–9 (2016)Google Scholar
  54. 54.
    Elaydi, S.: An Introduction to Difference Equations. Springer, Berlin (2005)zbMATHGoogle Scholar
  55. 55.
    Bahwaireth, K.; Benkhelifa, E.; Jararweh, Y.; Tawalbeh, M.A.: Experimental comparison of simulation tools for efficient cloud and mobile cloud computing applications. EURASIP J. Inf. Secur. 2016(1), 1–14 (2016)CrossRefGoogle Scholar
  56. 56.
    Tian, W.; Xu, M.; Chen, A.; Li, G.; Wang, X.; Chen, Y.: Open-source simulators for cloud computing: comparative study and challenging issues. Simul. Model. Pract. Theory 58, 239–254 (2015)CrossRefGoogle Scholar
  57. 57.
    Fahmy, H.M.A.: Simulators and emulators for WSNs. In: Wireless Sensor Networks. Signals and Communication Technology. Springer, Berlin, pp. 381–491 (2016)Google Scholar
  58. 58.
    Bertoli, M.; Casale, G.; Serazzi, G.: JMT: performance engineering tools for system modeling. ACM SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)CrossRefGoogle Scholar
  59. 59.
    Sarna, D.E.: Implementing and Developing Cloud Computing Applications. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  60. 60.
    Trivedi, K.S.; Sahner, R.: Sharpe at the age of twenty two. ACM SIGMETRICS Perform. Eval. Rev. 36(4), 52–57 (2009)CrossRefGoogle Scholar
  61. 61.

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Computer, Networks, Mobility and Modeling Laboratory, Faculty of Sciences and TechnologiesHassan 1st UniversitySettatMorocco
  2. 2.Electrical and Computer Engineering DepartmentKhalifa University of Science and TechnologyAbu DhabiUAE

Personalised recommendations