Skip to main content

Advertisement

Log in

Dynamic Characterization of a Bistable Energy Harvester Under Gaussian White Noise for Larger Time Constant

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the system parameters of a nonlinear bistable energy harvester excited by Gaussian white noise was investigated. Using Fokker–Planck–Kolmogorov equation, the probability distribution functions of displacement and velocity of the oscillator are obtained. The effect of various system parameters on the probability distributions of displacement and velocity of the oscillator and the mean square of the output voltage are investigated when the time constant of the piezoelectric circuit takes a larger value to achieve maximum voltage gain. The maximum peak values of the joint probability distribution of displacement and velocity of the oscillator decrease with the larger values of noise strength. The effect of parameters of bistable potential function on mean square of output voltage was also investigated. The system equations are numerically solved and mean square value of output voltage is numerically estimated and is seen to be increased as noise intensity increases and decreased as viscous damping increases. The result also shows that better power output can be achieved when the time constant takes larger value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anton, S.R.; Sodano, H.A.: A review of power harvesting using piezoelectric materials. Smart Mater. Struct. 16, 1–229 (2007)

    Article  Google Scholar 

  2. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 1, 165–167 (2007)

    Google Scholar 

  3. Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)

    Article  Google Scholar 

  4. Williams, C.B.; Yates, R.B.: Analysis of a micro-electric generator for micro-systems. Sens. Actuators Appl. Phys. 52, 8–11 (1996)

    Article  Google Scholar 

  5. Glynne-Jones, P.; Tudor, M.J.; Beeby, S.P.: White NM An electromagnetic vibration powered generator for intelligent sensor systems. Sens. Actuators A Phys. 110, 344–349 (2004)

    Article  Google Scholar 

  6. Tvedt, L.G.W.; Nguyen, D.S.; Halvorsen, E.: Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. J. Microelectromech. Syst. 19, 305–316 (2010)

    Article  Google Scholar 

  7. Roundy, S.; Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004)

    Article  Google Scholar 

  8. Shu, Y.; Lien, I.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006)

    Article  Google Scholar 

  9. Meninger, S.; Mur-Miranda, J.O.; Amirtharajah, R.; Chandrakasan, A.; Lang, J.: Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64 (2001)

    Article  Google Scholar 

  10. Cottone, F.; Vocca, H.; Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  11. Gammaitoni, L.; Neri, I.; Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102 (2009)

    Article  Google Scholar 

  12. Ferrari, M.; Ferrari, V.; Guizzetti, M.; Ando, B.; Baglio, S.; Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator Phys. 162, 425–431 (2010)

    Article  Google Scholar 

  13. Erturk, A.; Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Book  Google Scholar 

  14. Friswell, M.I.; Ali, S.F.; Bilgen, O.; Adhikari, S.; Lees, A.W.; Litak, G.: Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23, 1505 (2012)

    Article  Google Scholar 

  15. Litak, G.; Friswell, M.I.; Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)

    Article  Google Scholar 

  16. Daqaq, M.F.: Transduction of a bi-stable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2254–2264 (2011)

    Article  Google Scholar 

  17. Kumar, P.; Narayanan, S.; Adhikari, S.; Friswell, M.I.: Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. J. Sound Vib. 333, 2000–2033 (2014)

    Article  Google Scholar 

  18. Zhu, P.: Statistical stationary properties of nonlinear energy harvesting system under high-pass filter. Chin. J. Phys. 54, 545–554 (2016)

    Article  Google Scholar 

  19. McLachan, N.W.: Bessel Functions for Engineers. Clarendon Press, Oxford (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Sundar Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S.S., Rajamohan, V. & Jha, A.K. Dynamic Characterization of a Bistable Energy Harvester Under Gaussian White Noise for Larger Time Constant. Arab J Sci Eng 44, 721–730 (2019). https://doi.org/10.1007/s13369-018-3187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3187-1

Keywords

Navigation