Skip to main content
Log in

Spectral Efficiency Comparison of Asynchronous MC-CDMA, MC DS-CDMA and MT-CDMA with Carrier Frequency Offset

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Multicarrier code-division multiple access (MC-CDMA), multicarrier direct-sequence CDMA (MC DS-CDMA) and multitone CDMA (MT-CDMA) are three flavors of spread spectrum multicarrier communications. Multiple access interference, inter-carrier interference, self-interference and noise are the major factors that deteriorate their spectral efficiency. A novel joint analysis of spectral efficiency is presented for asynchronous MC-CDMA, MC DS-CDMA and MT-CDMA in a frequency-selective Rayleigh fading environment. This allows us to compare performance of the three schemes in indoor and outdoor environments in the presence of interferers, carrier frequency offset, multipath fading and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura, T.; Nagata, S.; Benjebbour, A.; Kishiyama, Y.; Hai, T.; Xiaodong, S.; Ning, Y.; Nan, L.: Trends in small cell enhancements in LTE advanced. IEEE Commun. Mag. 51(2), 98–105 (2013)

    Article  Google Scholar 

  2. Jasbi, F.; So, D.K.C.: Hybrid overlay/underlay cognitive radio network with MC-CDMA. IEEE Trans. Veh. Technol. 65(4), 2038–2047 (2016)

    Article  Google Scholar 

  3. Rabie, K.M.; Alsusa, E.: MC-CDMA transmission with blanking nonlinearity for impulsive noise power-line communication channels. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)

  4. Rabie, K.M.; Alsusae, E.: On improving communication robustness in PLC systems for more reliable smart grid applications. IEEE Trans. Smart Grid 6(6), 2746–2756 (2015)

    Article  Google Scholar 

  5. Wang, H.; Yao, Y.D.; Wang, R.; Shen, L.: Coordinated jamming and communications in an MC-CDMA system. IEEE Trans. Aerosp. Electron. Syst. 51(4), 3151–3160 (2015)

    Article  Google Scholar 

  6. Chen, Y.-W.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Weng, Z.-K.; Feng, K.-M.; Lin, G.-R.: Constructed MC-CDMA LR-PON with colorless laser diode and multicode interference cancellation DSP. J. Lightwave Technol. 35(13), 2646–2653, (2017). http://jlt.osa.org/abstract.cfm?URI=jlt-35-13-2646

  7. Yee, N.; Linnartz, J.; Fettweis, G.: Multicarrier CDMA in indoor wireless radio networks. In: Proceedings of IEEE PIMRC, pp. 109–113 (1993)

  8. DaSilva, V.; Sousa, E.: Performance of orthogonal CDMA codes for quasi-synchronous communication systems. In: Proceedings of IEEE ICUPC, vol. 2, pp. 995–999 (1993)

  9. Vandendorpe, L.: Multitone direct sequence CDMA system in an indoor wireless environment. In: Proceedings of IEEE First Symposium of Communications and Vehicular Technology, pp. 4.1.1–4.1.8 (1993)

  10. Li, M.; Liu, C.; Hanly, S.: Precoding for the sparsely spread MC-CDMA downlink with discrete-alphabet inputs. IEEE Transactions on Vehicular Technology PP(99), 1 (2016)

    Google Scholar 

  11. Sampaio, L.D.H.; Souza, R.C.e; Abro, T.: Game theoretic energy efficiency design in MC-CDMA cooperative networks. IEEE Sens. J. 14(9), 3065–3075 (2014)

    Article  Google Scholar 

  12. Banupriya, R.; Vijaya, N.; Susithra, G.; Anitha, S.: Performance enhancement of MC-CDMA system for high speed mobile users. In: 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 01, pp. 1–5 (2016)

  13. Huang, W.J.; Hu, W.W.; Li, C.P.; Chen, J.C.: Novel metric-based PAPR reduction schemes for MC-CDMA systems. IEEE Trans. Veh. Technol. 64(9), 3982–3989 (2015)

    Article  Google Scholar 

  14. Liu, Z.; Guan, Y.L.; Chen, H.H.: Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes. IEEE Trans. Wireless Commun. 14(3), 1226–1236 (2015)

    Article  Google Scholar 

  15. Wang, S.H.; Li, C.P.: Novel MC-CDMA system using Fourier duals of sparse perfect Gaussian integer sequences. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6 (2016)

  16. Jang, W.; Nguyen, L.; Lee, M.: MAI and ICI of asynchronous uplink MC-CDMA with frequency offset. IEEE Trans. Veh. Technol. 57(4), 2164–2179 (2008)

    Article  Google Scholar 

  17. Ahmed, J.; Hamdi, K.: Spectral efficiency degradation of multicarrier CDMA due to carrier frequency offset. In Proceedings of IEEE ICC, pp. 1 –5 (2011)

  18. Thiagarajan, L.; Attallah, S.; Abed-Meraim, K.; Liang, Y.-C.; Fu, H.: Non-data-aided joint carrier frequency offset and channel estimator for uplink MC-CDMA systems. IEEE Trans. Signal Process. 56(9), 4398–4408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, Y.; Tafazolli, R.: Estimation of carrier frequency offset for multicarrier CDMA uplink. IEEE Trans. Signal Process. 55(6), 2617–2627 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chien, F.-T.; Kuo, C.-C.: Blind recursive tracking of carrier frequency offset (CFO) vector in MC-CDMA systems. IEEE Trans. Wireless Commun. 6(4), 1246–1255 (2007)

    Article  Google Scholar 

  21. Tadjpour, L.; Tsai, S.-H.; Kuo, C.-C.J.: Simplified multiaccess interference reduction for MC-CDMA with carrier frequency offsets (CFO). IEEE Trans. Veh. Technol. PP(99), 1 (2010)

    Google Scholar 

  22. Kim, T.; Ko, K.; Kim, Y.; Hong, D.: Performance evaluation of uplink MC-CDMA systems with residual frequency offset. IEICE Trans. Commun. 89, 1455–1458 (2006)

    Article  Google Scholar 

  23. Tomba, L.; Krzymien, W.: Sensitivity of the MC-CDMA access scheme to carrier phase noise and frequency offset. IEEE Trans. Veh. Technol. 48(5), 1657–1665 (1999)

    Article  Google Scholar 

  24. Yang, L.-L.; Hanzo, L.: Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels. IEEE Trans. Commun. 50(6), 956–966 (2002)

    Article  Google Scholar 

  25. Shi, Q.; Latva-aho, M.: An exact error floor for downlink MC-CDMA in correlated Rayleigh fading channels. IEEE Commun. Lett. 6(5), 196–198 (2002)

    Article  Google Scholar 

  26. Hou, Z.; Dubey, V.: Exact analysis for downlink MC-CDMA in Rayleigh fading channels. IEEE Commun. Lett. 8(2), 90–92 (2004)

    Article  Google Scholar 

  27. Sorooshyari, S.; Daut, D.: Performance of multicarrier CDMA in the presence of correlated fading. IEEE Trans. Veh. Technol. 58(7), 3837–3843 (2009)

    Article  Google Scholar 

  28. Tulino, A.; Li, L.; Verdu, S.: Spectral efficiency of multicarrier CDMA. IEEE Trans. Inf. Theory 51(2), 479–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ahmed, J.; Hamdi, K.: Spectral efficiency of asynchronous MC-CDMA with frequency offset over correlated fading. IEEE Trans. Veh. Technol. 62(7), 3423–3429 (2013)

    Article  Google Scholar 

  30. Abeta, S.; Atarashi, H.; Sawahashi, M.; Adachi, F.: Coherent multicarrier/DS-CDMA and MC-CDMA for broadband packet wireless access. In: Proceedings of IEEE VTC, vol. 3, pp. 1918–1922 (2000)

  31. Suwa, S.; Atarashi, H.; Sawahashi, M.: Performance comparison between MC/DS-CDMA and MC-CDMA for reverse link broadband packet wireless access. In: Proceedings of IEEE VTC, vol. 4, pp. 2076–2080 (2002)

  32. Gui, X.; Ng, T.-S.: Performance of asynchronous orthogonal multicarrier CDMA system in frequency selective fading channel. IEEE Trans. Commun. 47(7), 1084–1091 (1999)

    Article  Google Scholar 

  33. Chen, J.-D.; Ueng, F.-B.; Chang, J.-C.; Su, H.: Performance analyses of OFDM-CDMA receivers in multipath fading channels. IEEE Trans. Veh. Technol. 58(9), 4805–4818 (2009)

    Article  Google Scholar 

  34. Smida, B.; Hanzo, L.; Affes, S.: Exact BER performance of asynchronous MC-DS-CDMA over fading channels. IEEE Trans. Wireless Commun. 9(4), 1249–1254 (2010)

    Article  Google Scholar 

  35. Chien, F.-T.; Hwang, C.-H.; Kuo, C.-C.: Performance analysis of multicarrier CDMA systems with frequency offsets and random spreading under optimum combining. IEEE Trans. Commun. 54(4), 737–747 (2006)

    Article  Google Scholar 

  36. Steendam, H.; Moeneclaey, M.: The effect of carrier frequency offsets on downlink and uplink MC-DS-CDMA. IEEE J. Sel. Areas Commun. 19(12), 2528–2536 (2001)

    Article  Google Scholar 

  37. Steendam, H.; Moeneclaey, M.: The effect of carrier phase jitter on MC-DS-CDMA. In: Proceedings of IEEE ICC, vol. 6, pp. 1881–1884 (2001)

  38. Steendam, H.; Moeneclaey, M.: The effect of timing jitter on MC-DS-CDMA. IEEE Trans. Commun. 52(3), 467–472 (2004)

    Article  Google Scholar 

  39. Vandendorpe, L.: Multitone spread spectrum multiple access communications system in a multipath Rician fading channel. In: Proceedings of IEEE ICC, vol. 3 , pp. 1638–1642 (1994)

  40. Hara, S.; Prasad, R.: Overview of multicarrier CDMA. IEEE Commun. Mag. 35(12), 126–133 (1997)

    Article  Google Scholar 

  41. Li, K.; Darwazeh, I.: System performance comparison of fast-OFDM with overlapping MC-DS-CDMA and MT-CDMA systems. In: Proceedings of IEEE ICICS, pp. 1–4 (2007)

  42. Rahman, Q.; Sesay, A.: Performance analysis of MT-CDMA system with diversity combining. In: Proceedings of IEEE MILCOM, vol. 2, pp. 1360–1364 (2001)

  43. Yang, L.-L.; Hanzo, L.: Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels. IEEE Trans. Commun. 50(6), 956–966 (2002)

    Article  Google Scholar 

  44. Jakes, W.C. (ed.): Microwave Mobile Communications. IEEE Press, New York (1974)

    Google Scholar 

  45. Hamdi, K.: Theoretical analysis of the orthogonality factor in WCDMA downlinks. IEEE Trans. Wireless Commun. 8(11), 5394–5399 (2009)

    Article  Google Scholar 

  46. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  47. Zhang, Z.; Zhang, W.; Tellambura, C.: Robust OFDMA uplink synchronization by exploiting the variance of carrier frequency offsets. IEEE Trans. Veh. Technol. 57(5), 3028–3039 (2008)

    Article  Google Scholar 

  48. Hamdi, K.: A useful lemma for capacity analysis of fading interference channels. IEEE Trans. Commun. 58(2), 411–416 (2010)

    Article  Google Scholar 

  49. Turin, G.L.: The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika 47, 199–201 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tse, D.; Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J. Spectral Efficiency Comparison of Asynchronous MC-CDMA, MC DS-CDMA and MT-CDMA with Carrier Frequency Offset. Arab J Sci Eng 44, 1833–1841 (2019). https://doi.org/10.1007/s13369-018-3123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3123-4

Keywords

Navigation