Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 7, pp 3453–3463 | Cite as

The Use of Palm Oil-Based Waste Cooking Oil to Enhance the Production of Polyhydroxybutyrate [P(3HB)] by Cupriavidus necator H16 Strain

  • Hanisah Kamilah
  • Adel Al-Gheethi
  • Tajul Aris Yang
  • Kumar Sudesh
Research Article - Biological Sciences

Abstract

Waste cooking oil (WCO) is of increasing interest as an inexpensive feedstock to produce biodegradable plastic, poly(3-hydroxybutyrate) [P(3HB)]. In the present study, palm oil-based WCO (PO-WCO) was obtained from nine different locations. Palm oil-based fresh cooking oil (PO-FCO) and PO-WCO were characterised via proximate and physicochemical analysis, prior to being used as carbon sources for the biosynthesis of P(3HB) using Cupriavidus necator H16. It was shown that the free fatty acid, peroxide value, and saturated compounds in all batches of PO-WCO were higher compared to those in the PO-FCO. The cells produced 60–80 wt% P(3HB) with dry cell weight of 14–17 g/L. The weight average molecular weight \((M_{\mathrm{w}})\) was found to be \(1.8 \times 10^{6}\) Da with a polydispersity \((M_{\mathrm{w}}/M_{\mathrm{n}})\) of 2.7 when PO-WCO was used as the carbon source. The PO-WCO was found to be suitable to be used as a sustainable carbon source for cell growth and P(3HB) biosynthesis.

Keywords

Biomaterial Waste Cooking oil P(3HB) C. necator H16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the community of Teluk Bahang, Penang, Malaysia, for contributing the PO-WCO used in this study. This study was funded in parts by the Division of Industry and Community Network and Short-Term Research Grants (304/Pbiologi/6311070) from Universiti Sains Malaysia (USM). H. Kamilah acknowledges USM Fellowship during the period of the study.

References

  1. 1.
    Doi, Y.: Microbial Polyesters. VCH Publishers, Hoboken (1990)Google Scholar
  2. 2.
    Loo, C.Y.; Sudesh, K.: Polyhydroxyalkanoates: bio-based microbial plastics and their properties. MPJ 2(2), 31–57 (2007)Google Scholar
  3. 3.
    Park, D.H.; Kim, B.S.: Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol. 28(6), 719–724 (2011)CrossRefGoogle Scholar
  4. 4.
    Sudesh, K.; Doi, Y.: Molecular design and biosynthesis of biodegradable polyesters. Polym. Adv. Technol. 11, 865–872 (2000)CrossRefGoogle Scholar
  5. 5.
    Rao, U.; Sridhar, R.; Sehgal, P.K.: Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem. Eng. J. 49, 13–20 (2010)CrossRefGoogle Scholar
  6. 6.
    Sudesh, K.; Bhubalan, K.; Chuah, J.; Kek, Y.K.; Kamilah, H.; Sridewi, N.; Lee, Y.F.: Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl. Microbiol. Biotechnol. 89, 1373–1386 (2011)CrossRefGoogle Scholar
  7. 7.
    Riedel, S.L.; Bader, J.; Brigham, C.J.; Budde, C.F.; Yusof, Z.Z.; Rha, C.; Sinskey, A.J.: Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109, 74–83 (2012)CrossRefGoogle Scholar
  8. 8.
    Taniguchi, I.; Kagotani, K.; Kimura, Y.: Microbial production of poly(hydroxyalkanoate)s from waste edible oils. Green Chem. 5, 545–548 (2003).  https://doi.org/10.1039/b304800b CrossRefGoogle Scholar
  9. 9.
    Brigham, C.J.; Sinskey, A.J.: Applications of polyhydroxyalkanoates in the medical industry. Int. J. Biotechnol. Wellness. Ind. 1, 53–60 (2012)Google Scholar
  10. 10.
    Lutke-Eversloh, T.; Fischer, A.; Remminghorst, U.; Kawada, J.; Marchessault, R.H.; Bogershausen, A.; Kalwei, M.; Eckert, H.; Reichelt, R.; Liu, S.J.; Steinbüchel, A.: Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Appl. Microbiol. Biotechnol. 98, 1469–1483 (2002)Google Scholar
  11. 11.
    Anderson, A.J.; Dawes, E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54(4), 450–472 (1990)Google Scholar
  12. 12.
    Doi, Y.; Kitamura, S.; Abe, H.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822–4828 (1995)CrossRefGoogle Scholar
  13. 13.
    Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav, A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013, 1–10 (2013)CrossRefGoogle Scholar
  14. 14.
    Chanasit, W.; Hodgson, B.; Sudesh, K.; Umsakul, K.: Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Biosci. Biotechnol. Biochem. 80(7), 1440–1450 (2016)CrossRefGoogle Scholar
  15. 15.
    Gomaa, E.Z.: Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz. Arch. Biol. Technol. 57(1), 145–154 (2014)CrossRefGoogle Scholar
  16. 16.
    Sudesh, K.; Abe, H.: Practical Guide to Microbial Polyhydroxyalkanoates. Smithers Rapra, Shrewsbury (2010)Google Scholar
  17. 17.
    Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E.: Screening and evaluation of poly(3-hydroxybutyrate) with Rhodococcus equi using different carbon sources. Arab. J. Sci. Eng. 41, 1–11 (2016).  https://doi.org/10.1007/s13369-016-2327-8 CrossRefGoogle Scholar
  18. 18.
    Lee, S.Y.; Choi, J.; Wong, H.H.: Recent advances in polyhydroxyalakanoate production by bacterial fermentation: mini-review. Int. J. Biol. Macromol. 25, 31–36 (1999)CrossRefGoogle Scholar
  19. 19.
    Song, J.H.; Jeon, C.O.; Choi, M.H.; Yoon, S.C.; Park, W.: Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. Strain DR2. J. Microbiol. Biotechnol. 18(8), 1408–1415 (2008)Google Scholar
  20. 20.
    Liu, F.; Li, W.; Ridgway, D.; Gu, T.: Production of poly-ß-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnol. Lett. 20, 345–348 (1998)CrossRefGoogle Scholar
  21. 21.
    Akaraonye, E.; Keshavarz, T.; Roy, I.: Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743 (2010)CrossRefGoogle Scholar
  22. 22.
    Kulkarni, M.G.; Dalai, A.K.: Waste cooking oil-an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 45, 2901–2913 (2006)CrossRefGoogle Scholar
  23. 23.
    UN: Economic and social commission for Western Asia wastewater treatment technologies: a general review. In: United Nations (ed.). Distr. General E/ESCWA/SDPD (2003)Google Scholar
  24. 24.
    Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y.: High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stabil. 83, 79–86 (2004)CrossRefGoogle Scholar
  25. 25.
    Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Seget, Z.P.; Radecka, I.K.: Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1, 1–8 (2011)CrossRefGoogle Scholar
  26. 26.
    AOAC: Official Methods of Analysis of AOAC International, 17th edn. AOAC International, USA (2000)Google Scholar
  27. 27.
    Dieffenbacher, A.; Pocklington, W.D.: Standard Methods for the Analysis of Oils, Fats and Derivatives. Blackwell Scientific Publications, Oxford (1992)Google Scholar
  28. 28.
    Mondello, L.; Tranchida, P.Q.; Dugo, P.; Dugo, G.: Rapid, micro-scale preparation and very fast gas chromatographic separation of cod liver oil fatty acid methyl esters. J. Pharm. Biomed. Anal. 41, 1566–1570 (2006)CrossRefGoogle Scholar
  29. 29.
    Kilcawley, K.N.; Wilkinson, M.G.; Fox, P.F.: Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzyme Microb. Technol. 31, 310–320 (2002)CrossRefGoogle Scholar
  30. 30.
    Budde, C.F.; Riedel, S.L.; Hübner, F.; Risch, S.; Popović, M.K.; Rha, C.; Sinskey, A.J.: Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 89, 1611–1619 (2011)CrossRefGoogle Scholar
  31. 31.
    McDowell, E.M.; Trump, B.F.: Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976)Google Scholar
  32. 32.
    Cortinas, L.; Villaverde, C.; Galobart, J.; Baucells, M.D.; Codony, R.; Barroeta, A.C.: Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 83, 1155–1164 (2004)CrossRefGoogle Scholar
  33. 33.
    de Almeida, J.C.; Perassolo, M.S.; Camargo, J.L.; Bragagnolo, N.; Gross, J.L.: Fatty acid composition and cholesterol content of beef and chicken meat in Southern Brazil. Braz. J. Pharm. Sci. 42, 109–117 (2006)Google Scholar
  34. 34.
    Rule, D.C.; Broughton, K.S.; Shellito, S.M.; Maiorano, G.: Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef, cattle, elk, and chicken. J. Anim. Sci. 80, 1202–1211 (2002)CrossRefGoogle Scholar
  35. 35.
    Mittelbach, M.; Enzelsberger, H.: Transesterification of heated rapeseed oil for extending diesel fuel. J. Am. Oil Chem. Soc. 76(5), 545–550 (1999)CrossRefGoogle Scholar
  36. 36.
    Nawar, W.W.: Chemical changes in lipids produced by thermal processing. J. Chem. Ed. 61(4), 299–302 (1984)CrossRefGoogle Scholar
  37. 37.
    Knothe, G.; Dunn, R.O.: Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J. Am. Oil Chem. Soc. 80(10), 1021–1026 (2003)CrossRefGoogle Scholar
  38. 38.
    Siddique, B.M.; Ahmad, A.; Ibrahim, M.H.; Hena, S.; Rafatullah, M.; Omar, A.K.M.: Physico-chemical properties of blends of palm olein with other vegetable oils. Grasas Aceites (2010).  https://doi.org/10.3989/gya.010710 Google Scholar
  39. 39.
    Lertsathapornsuk, V.; Pairintra, R.; Aryusuk, K.; Krisnangkura, K.: Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol. 89(12), 1330–1336 (2008)CrossRefGoogle Scholar
  40. 40.
    Tan, C.P.; Che Man, Y.B.: Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: effects of scanning rate variation. Food Chem. 76, 89–102 (2002)CrossRefGoogle Scholar
  41. 41.
    Ong, A.S.H.; Goh, S.H.: Palm oil: a healthful and cost-effective dietary component. Food Nutr. Bull. 23(1), 11–22 (2002)CrossRefGoogle Scholar
  42. 42.
    Martino, L.; Cruz, M.V.; Scoma, A.; Freitas, F.; Bertin, L.; Scandola, M.; Reis, M.A.M.: Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int. J. Biol. Macromol. 71, 117–123 (2014)CrossRefGoogle Scholar
  43. 43.
    Obruca, S.; Marova, I.; Snajdar, O.; Mravcova, L.; Svoboda, Z.: Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 32, 1925–1932 (2010)CrossRefGoogle Scholar
  44. 44.
    Cruz, M.V.; Freitas, F.; Paiva, A.; Mano, F.; Dionı’sio, M.; Ramos, A.M.; Reis, M.A.M.: Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol. 33, 206–215 (2015)CrossRefGoogle Scholar
  45. 45.
    Nawar, W.W.: Chemical changes in lipids produced by thermal processing. J. Chem. Ed. 61(4), 299–302 (1984)CrossRefGoogle Scholar
  46. 46.
    Oliveira, F.C.; Dias, M.L.; Castilho, L.R.; Freire, D.M.G.: Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour. Technol. 98, 633–638 (2007)CrossRefGoogle Scholar
  47. 47.
    Motasemi, F.; Ani, F.N.: The production of biodiesel from waste cooking oil using microwave irradiation. J. Mek. 32, 61–72 (2011)Google Scholar
  48. 48.
    Arroyo, R.; Cuesta, C.; Sanchez-Montero, J.M.; Sanchez-Muniz, F.J.: High performance size exclusion chromatography of palm olein used for frying. Eur. J. Lipid Sci. Technol 97, 292–296 (1995)Google Scholar
  49. 49.
    Tsuge, T.: Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94(6), 579–584 (2002)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaGelugorMalaysia
  2. 2.Department of Water and Environmental Engineering, Faculty of Civil and Environmental EngineeringUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatMalaysia
  3. 3.Ecobiomaterial Research Laboratory, School of Biological SciencesUniversiti Sains MalaysiaGelugorMalaysia

Personalised recommendations