Arabian Journal for Science and Engineering

, Volume 43, Issue 7, pp 3845–3854 | Cite as

Effects of Temperature on Corrosion of N80 and 3Cr Steels in the Simulated \(\hbox {CO}_{2}\) Auxiliary Steam Drive Environment

  • Dezhi ZengEmail author
  • Baojun Dong
  • Shanzhi Shi
  • Jingjun Pan
  • Huiyong Yu
  • Jie Li
  • Yanyan Ding
  • Lele Cai
Research Article - Physics


Corrosion tests were conducted in a HTHP autoclave to simulate the \(\hbox {CO}_{2}\) auxiliary steam drive. N80 and 3Cr steels were subjected to weight loss test under the condition of \(\hbox {CO}_{2}\) partial pressure of 2 MPa in the temperature range of \(160{-}220\,{^{\circ }}\hbox {C}\). The corrosion morphology and product composition were explored by SEM, EDS, XRD, and XPS. The exploration results showed the corrosion rate of N80 and 3Cr steels decreased firstly and then increased with temperature rise. The temperature determined quantity of water films, which affected the corrosion behaviors. Moreover, the temperature affected the number and morphology of corrosion product crystals. The general corrosion rate of N80 and 3Cr steels was lower than the corrosion control line of oil field (0.076 mm/a), and the average corrosion rates of N80 and 3Cr steels met the application requirements in \(\hbox {CO}_{2}\) auxiliary steam drive.


\(\hbox {CO}_{2}\) auxiliary steam drive Temperature N80 steel 3Cr steel Corrosion scales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was financially supported by the National Natural Science Foundation of China (Grant No. 51374177) and National Science and Technology Major Project of China (Grant No. 2016ZX05012-001).


  1. 1.
    Kamari, A.; Hemmati-Sarapardeh, A.; Mohammadi, A.H.; Hashemi-Kiasari, H.; Mohagheghian, E.: On the evaluation of Fast-SAGD process in naturally fractured heavy oil reservoir. Fuel 143, 155–164 (2015)CrossRefGoogle Scholar
  2. 2.
    Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.: Temporal variations in near-wellbore pressures during \(\text{ CO }_{2}\) injection in saline aquifers. Int. J. Greenh. Gas Control 5(5), 1140–1148 (2011)CrossRefGoogle Scholar
  3. 3.
    Choi, Y.S.; Nesic, S.; Young, D.: Effect of impurities on the corrosion behavior of \(\text{ CO }_{2}\) transmission pipeline steel in supercritical \(\text{ CO }_{2}\)-water environments. Environ. Sci. Technol. 44(23), 9233–9238 (2010)CrossRefGoogle Scholar
  4. 4.
    Zhao, J.; Chen, G.: The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a \(\text{ CO }_{2}\)-saturated brine solution. Electrochim. Acta 69(5), 247–255 (2012)CrossRefGoogle Scholar
  5. 5.
    Nesic, S.: Effects of multiphase flow on internal \(\text{ CO }_{2}\) corrosion of mild steel pipelines. Energy Fuel 26(7), 4098–4111 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhu, S.D.; Fu, A.Q.; Miao, J.; Yin, Z.F.; Zhou, G.S.; Wei, J.F.: Corrosion of N80 carbon steel in oil field formation water containing \(\text{ CO }_{2}\) in the absence and presence of acetic acid. Corros. Sci. 53(10), 3156–3165 (2011)CrossRefGoogle Scholar
  7. 7.
    Desimone, M.P.; Gordillo, G.; Simison, S.N.: The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in \(\text{ CO }_{2}\) saturated solution. Corros. Sci. 53(12), 4033–4043 (2011)CrossRefGoogle Scholar
  8. 8.
    Wan, R.F.: Advanced Well Completion Engineerin. Petroleum Industry Press, Beijing (2012)Google Scholar
  9. 9.
    NACE MR0175/ISO 15156: Petroleum and natural gas industrial-materials for use in \(\text{ H }_{2}\)S-containing environments in oil and gas production. NACE National, Houston, USAGoogle Scholar
  10. 10.
    Zhang, Y.; Pang, X.; Qu, S.; Li, X.; Gao, K.: Discussion of the \(\text{ CO }_{2}\) corrosion mechanism between low partial pressure and supercritical condition. Corros. Sci. 59(3), 186–197 (2012)CrossRefGoogle Scholar
  11. 11.
    Eslami, A.; Kania, R.; Worthingham, B.; Boven, G.V.; Eadie, R.; Chen, W.: Effect of \(\text{ CO }_{2}\) and R-ratio on near-neutral pH stress corrosion cracking initiation under a disbonded coating of pipeline steel. Corros. Sci. 53(6), 2318–2327 (2011)CrossRefGoogle Scholar
  12. 12.
    Lin, X.; Liu, W.; Wu, F.; Xu, C.; Dou, J.; Lu, M.: Effect of \(\text{ O }_{2}\) on corrosion of 3Cr steel in high temperature and high pressure \(\text{ CO }_{2}\)-O\(_{2}\) environment. Appl. Surf. Sci. 329, 104–115 (2015)CrossRefGoogle Scholar
  13. 13.
    Xu, X.Q.; Bai, Z.Q.; Feng, Y.R.; Ma, Q.R.; Zhao, W.Z.: The influence of temperature on the corrosion resistance of 10# carbon steel for refinery heat exchanger tubes. Appl. Surf. Sci. 280(7), 641–645 (2013)Google Scholar
  14. 14.
    Hua, Y.; Barker, R.; Neville, A.: Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical \(\text{ CO }_{2}\). Int. J. Greenh. Gas Control 31(2), 48–60 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, G.A.; Cheng, Y.F.: Localized corrosion of carbon steel in a \(\text{ CO }_{2}\)-saturated oilfield formation water. Electrochim. Acta 56(3), 1676–1685 (2011)CrossRefGoogle Scholar
  16. 16.
    Gao, M.; Pang, X.; Gao, K.: The growth mechanism of \(\text{ CO }_{2}\) corrosion product films. Corros. Sci. 53(2), 557–568 (2011)CrossRefGoogle Scholar
  17. 17.
    Xu, L.; Guo, S.; Chang, W.; Chen, T.; Hu, L.; Lu, M.: Corrosion of Cr bearing low alloy pipeline steel in \(\text{ CO }_{2}\) environment at static and flowing conditions. Appl. Surf. Sci. 270(4), 395–404 (2013)CrossRefGoogle Scholar
  18. 18.
    Guo, S.; Xu, L.; Zhang, L.; Chang, W.; Lu, M.: Corrosion of alloy steels containing 2% chromium in \(\text{ CO }_{2}\) environments. Corros. Sci. 63, 246–258 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y.; Gao, K.; Schmitt, G.; Hausler, R.H.: Modeling steel corrosion under supercritical \(\text{ CO }_{2}\) conditions. Mater. Corros. 64(6), 478–485 (2013)CrossRefGoogle Scholar
  20. 20.
    Wu, S.L.; Cui, Z.D.; He, F.; Bai, Z.Q.; Zhu, S.L.; Yang, X.J.: Characterization of the surface film formed from carbon dioxide corrosion on N80 steel. Mater. Lett. 58(6), 1076–1081 (2004)CrossRefGoogle Scholar
  21. 21.
    Jiang, X.; Zheng, Y.G.; Qu, D.R.; Ke, W.: Effect of calcium ions on pitting corrosion and inhibition performance in \(\text{ CO }_{2}\) corrosion of N80 steel. Corros. Sci. 48(10), 3091–3108 (2006)CrossRefGoogle Scholar
  22. 22.
    Li, D.G.; Feng, Y.R.; Bai, Z.Q.; Zheng, M.S.: Characteristics of \(\text{ CO }_{2}\) corrosion scale formed on N80 steel in stratum water with saturated \(\text{ CO }_{2}\). Appl. Surf. Sci. 253(20), 8371–8376 (2007)CrossRefGoogle Scholar
  23. 23.
    Sun, J.; Sun, C.; Lin, X.; Cheng, X.; Liu, H.: Effect of chromium on corrosion behavior of P110 steels in \(\text{ CO }_{2}\)-H\(_{2}\)S environment with high pressure and high temperature. Materials 9(3), 200 (2016)CrossRefGoogle Scholar
  24. 24.
    SY/T 5329-2012: Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs. Petroleum Industry Press, Beijing, ChinaGoogle Scholar
  25. 25.
    Ingham, B.; Ko, M.; Laycock, N.; Burnell, J.; Kappen, P.; Kimpton, J.A.; Williams, D.E.: In situ synchrotron X-ray diffraction study of scale formation during \(\text{ CO }_{2}\) corrosion of carbon steel in sodium and magnesium chloride solutions. Corros. Sci. 56(3), 96–104 (2012)CrossRefGoogle Scholar
  26. 26.
    López, D.A.; Schreiner, W.H.; Sánchez, S.R.D.; Simison, S.N.: The influence of inhibitors molecular structure and steel microstructure on corrosion layers in \(\text{ CO }_{2}\) corrosion: an XPS and SEM characterization. Appl. Surf. Sci. 236(1), 77–97 (2004)CrossRefGoogle Scholar
  27. 27.
    Eliyan, F.F.; Mohammadi, F.; Alfantazi, A.: An electrochemical investigation on the effect of the chloride content on \(\text{ CO }_{2}\) corrosion of API-X100 steel. Corros. Sci. 64(6), 37–43 (2012)CrossRefGoogle Scholar
  28. 28.
    Han, J.; Zhang, J.; Carey, J.W.: Effect of bicarbonate on corrosion of carbon steel in \(\text{ CO }_{2}\) saturated brines. Int. J. Greenh. Gas Control 5(6), 1680–1683 (2011)CrossRefGoogle Scholar
  29. 29.
    Linter, B.R.; Burstein, G.T.: Reactions of pipeline steels in carbon dioxide solutions. Corros. Sci. 41(1), 117–139 (1999)CrossRefGoogle Scholar
  30. 30.
    Kuang, D.; Cheng, Y.F.: Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros. Sci. 85(4), 304–310 (2014)CrossRefGoogle Scholar
  31. 31.
    Lu, Z.; Huang, D.; Yang, W.: Probing into the effects of a magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate based on the fundamental electrochemistry kinetics. Corros. Sci. 47(6), 1471–1492 (2005)CrossRefGoogle Scholar
  32. 32.
    Sun, W.; Nešić, S.; Woollam, R.C.: The effect of temperature and ionic strength on iron carbonate (FeCO\(_{3})\) solubility limit. Corros. Sci. 51(6), 1273–1276 (2009)CrossRefGoogle Scholar
  33. 33.
    Farelas, F.; Galicia, M.; Brown, B.; Nesic, S.; Castaneda, H.: Evolution of dissolution processes at the interface of carbon steel corroding in a \(\text{ CO }_{2}\) environment studied by EIS. Corros. Sci. 52(2), 509–517 (2010)CrossRefGoogle Scholar
  34. 34.
    Chen, C.F.; Chang, W.F.; Zhang, Z.H.; Lu, M.X.; Sun, D.B.: Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. Corrosion 61(6), 594–601 (2005)CrossRefGoogle Scholar
  35. 35.
    Xue, F.; Xu, L.Y.; Jing, H.Y.; Han, Y.D.: Corrosion behavior of mechanical clad pipe welded joints in \(\text{ CO }_{2}\)c saturated seawater under high temperature and high pressure. Mater. Corros. 64(6), 544–549 (2014)CrossRefGoogle Scholar
  36. 36.
    Guo, S.; Xu, L.; Zhang, L.; Chang, W.; Lu, M.: Characterization of corrosion scale formed on 3Cr steel in \(\text{ CO }_{2}\)-saturated formation water. Corros. Sci. 110, 123–133 (2016)CrossRefGoogle Scholar
  37. 37.
    Zhang, H.; Zhao, Y.L.; Jiang, Z.D.: Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to \(\text{ CO }_{2}\) and Cl\(^{-}\) environment. Mater. Lett. 59(27), 3370–3374 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Dezhi Zeng
    • 1
    Email author
  • Baojun Dong
    • 1
  • Shanzhi Shi
    • 2
  • Jingjun Pan
    • 2
  • Huiyong Yu
    • 2
  • Jie Li
    • 2
  • Yanyan Ding
    • 2
  • Lele Cai
    • 1
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.Research Institute of Engineering TechnologyXin Jiang Oil field company, PetroChinaKaramayChina

Personalised recommendations