Skip to main content
Log in

A Novel Heaving Ocean Wave Energy Harvester with a Frequency Tuning Capability

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study introduces a novel wave energy harvester (WEH) with frequency conversion capability to convert the ocean wave energy to usable electricity based on the piezoelectric effect. The presented WEH is with characteristics of space saving and minimized component quantities and is made of a cylindrical case reciprocally moving with respect to the fixed core shaft attached to identical magnetic bars. The cylindrical case contains four magnetic bar-mass-spring-lever-piezoelectric systems arranged symmetrically each other to the fixed shaft. By this smart design, the WEH is capable of converting the low frequency of ocean waves to a higher excitation frequency of motions on the piezoelectric transducer to harness higher electric power and reduce electrical leakage. A mathematical model of the WEH considering the wave–structure interaction is developed to evaluate the effectiveness of the converter. The simulation results reveal that the occurrence of resonance can lead to an outstanding power output via adjusting the distance between two adjacent magnetic bars. The power output is realized up to 750 W with the converter height and diameter, ocean wave height, and wave period being 1 m, 1 m, 1.5 m and 8 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khaligh, A.; Onar, O.C.: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems (Energy, Power Electronics, and Machines), p. 1. Hardcover, Boca Raton (2009)

    Google Scholar 

  2. Falnes, J.: A review of wave-energy extraction. Mar. Struct. 20, 185–201 (2007)

    Article  Google Scholar 

  3. Zhang, Y.L.; Lin, Z.: Advances in technology of ocean wave energy converters using piezoelectric materials. J. Hydroelectr. Eng. 5, 324–331 (2011)

    Google Scholar 

  4. Anton, S.R.; Sodano, H.A.: A review of power harvesting using piezoelectric materials 2003–2006. Smart. Mater. Struct. 16, 21–27 (2007)

    Article  Google Scholar 

  5. http://acore.org/wp-content/uploads/2012/01. Accessed 9 Apr 2018

  6. Sravanthi, C; James, M.C.: A Survey of Energy Harvesting Sources for Embedded Systems. IEEE (2008)

  7. Williams, C.B.; Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A 52, 8–11 (1996)

    Article  Google Scholar 

  8. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 165–182 (2007)

    Google Scholar 

  9. http://www.piezo.com/tech3faq.html. Accessed 9 May 2018

  10. Gu, L.; Livermore, C.: Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 97, 04–09 (2016)

    Google Scholar 

  11. Viet, N.V.; Wu, N.; Wang, Q.A.: review on energy harvesting from ocean waves by piezoelectric technology. J. Mod. Mech. Mater. 4, 161–171 (2017)

    Google Scholar 

  12. Murray, R.; Rastegar, J.: Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys. Act. Passive Smart Struct. Integr. Syst. SPIE 7288, 1117–1129 (2009)

    Google Scholar 

  13. Miller, L.M; Wright, P.K; Ho, C.C; Evans, J.W; Shafer, P.C; Ramesh, R.: Integration of a low frequency, tunable MEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor nodes in IEEE, ECCE, 27–34 (2009)

  14. Zhou, S.; Cao, J.; Erturk, A.; Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 01–05 (2013)

    Google Scholar 

  15. Erturk, A.; Hoffmann, J.; Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 02–06 (2009)

    Article  Google Scholar 

  16. Zhou, S.; Cao, J.; Inman, D.J.; Liu, S.; Wang, W.; Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106, 01–06 (2015)

    Google Scholar 

  17. Xie, X.D.; Wang, Q.; Wu, N.: A ring piezoelectric energy harvester excited by magnetic forces. Int. J. Eng. Sci. 77, 71–78 (2014)

    Article  MATH  Google Scholar 

  18. Viet, N.V.; Al-Qutayri, M.; Liew, K.M.; Wang, Q.: An octo-generator for energy harvesting based on the piezoelectric effect. Appl. Ocean Res. 64, 128–134 (2017)

    Article  Google Scholar 

  19. Viet, N.V.; Wang, Q.; Carpinteri, A.: Development of an ocean wave energy harvester with a built-in frequency conversion function. Int. J. Energy. Res. 42, 684–695 (2017)

    Article  Google Scholar 

  20. Wu, N; Wang, Q; Xie, X.: Ocean wave energy harvesting with a piezoelectric coupled buoy. US Patent 9,726,143, 08/August (2017)

  21. McCormick, M.: Ocean Engineering Mechanics With Applications. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  22. McCormick, M.: Ocean Wave Energy Conversion. Dover Publications, Mineola, NY (2007)

    Google Scholar 

  23. Rafael, E.V.; Carl, D.C.; Julio, C.C.: Analysis of a planar tensegrity mechanism for ocean wave energy harvesting. J. Mech. Robot. 6, 31015–31021 (2014)

    Article  Google Scholar 

  24. Kristiansen, E; Egeland, O.: Frequency dependent added mass in models for controller design for wave motion ship damping. MCMC’03, Girona, Spain 17–19 (2003)

  25. Taghipour, R.; Perez, T.; Moan, T.: Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Eng. 35(7), 685–705 (2008)

    Article  Google Scholar 

  26. Abramowitz, M.; Stegun, I.A.: Handbook of Mathematical Functions, Dover Publications. New York. Originally published by the U. S. Printing Office, Washington, DC (1965)

  27. https://en.wikipedia.org/wiki/Drag_coefficient. Accessed 9 Apr 2018

  28. Spooner, E.; Grimwade, J.: \(\text{Snapper}^{{\rm TM}}\): an efficient and compact direct electric power take-off device for wave energy converters. In: Proceedings of the World Maritime Technology Conference, 6–10 March, London, UK (2006)

  29. John, S.W.M; Adams, D.: Gyroscopic roll stabilizer for boats. US10454905, 04/June (2003)

  30. http://www.piezo.com/tech3faq.html. Accessed 5 Mar 2018

  31. www.kjmagnetics.com/calculator.asp. Accessed 16 Mar 2018

  32. http://www.intemag.com/magnetic_properties.html#neodymium_props. Accessed 9 May 2018

  33. Al-Ashtari, W.; Hunstig, M.; Hemsel, T.; Sextro, W.: Frequency tuning of piezoelectric energy harvesters by magnetic force. Smart Mater. Struct. 21, 19–24 (2012)

    Article  Google Scholar 

  34. Viet, N.V.; Xie, X.D.; Liew, K.M.; Banthia, N.; Wang, Q.: Energy harvesting from ocean waves by a floating energy harvester. Energy 112, 1219–1226 (2016)

    Article  Google Scholar 

  35. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  36. Woodhouse, J.: Linear damping models for structural vibration. J. Sound. Vib. 215(3), 547–69 (1998)

    Article  MATH  Google Scholar 

  37. Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. IEEE 96, 1455–1458 (2008)

    Article  Google Scholar 

  38. Xie, X.D.; Wang, Q.: Energy harvesting from a vehicle suspension system. Energy 86, 385–92 (2015)

    Article  Google Scholar 

  39. Ravi, T.T.; Krishna, C.T.: Computation of natural frequencies of multi degree of freedom system. Int. J. Eng. Res. Technol. 10, 2278–2281 (2012)

    Google Scholar 

  40. Wu, N.; Wang, Q.; Xie, X.D.: Wind energy harvesting with a piezoelectric harvester. Smart Mater. Struct. 22, 23–28 (2013)

    Google Scholar 

  41. Tao, J.X.; Viet, N.V.; Carpinteri, A.; Wang, Q.: Energy harvesting from wind by a piezoelectric harvester. Eng. Struct. 133, 74–80 (2017)

    Article  Google Scholar 

  42. http://www.oceanpowertechnologies.com/pb3/. Accessed 19 Apr 2018

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Viet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viet, N.V., Carpinteri, A. & Wang, Q. A Novel Heaving Ocean Wave Energy Harvester with a Frequency Tuning Capability. Arab J Sci Eng 44, 5711–5722 (2019). https://doi.org/10.1007/s13369-018-03707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03707-4

Keywords

Navigation