Skip to main content
Log in

Stability Configuration of a Rocking Rigid Rod over a Circular Surface Using the Homotopy Perturbation Method and Laplace Transform

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current paper is concerned with the motion of a rocking uniform rigid rod, without slipping, over a rigid circular surface. The governing equation of motion resulted in a highly nonlinear second-order ordinary differential equation. This nonlinear equation has no natural frequency. A coupling the homotopy perturbation method and Laplace transform is adopted to obtain an approximate solution of the equation of motion. In addition, He’s transformation method is used to obtain a periodic solution. Stability conditions are derived by making use of a nonlinear frequency analysis. Numerical calculations are achieved to investigate the governed perturbed solutions as well as the stability picture. It is found that the radius of the length of the rigid rod as well as the radius of the circular surface has a stabilizing influence. In contrast, the initial angular velocity has a destabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H.; Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  3. Awrejcewicz, J.; Andrianov, I.V.; Manevitch, L.I.: Asymptotic Approaches in Nonlinear Dynamics (New Trends and Applications). Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  4. El-Dib, Y.O.; Moatimid, G.M.: On the coupling of the homotopy perturbation and Frobenius method for exact solutions of singular nonlinear differential equations. Nonlinear Sci. Lett. A 9(3), 220–230 (2018)

    Google Scholar 

  5. He, J.H.: Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations: part I—expansion of a constant. Int. J. Nonlinear Mech. 37(2), 309–314 (2002)

    Article  MATH  Google Scholar 

  6. He, J.H.: Max–min approach to nonlinear oscillator. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 207–210 (2008)

    Google Scholar 

  7. Ganji, S.S.; Ganji, D.D.; Karimpour, S.; Babazadeh, H.: Applications of He’s homotopy perturbation method to obtain second-order approximations of the coupled two-degree-of-freedom systems. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 303–312 (2009)

    Article  Google Scholar 

  8. Yildirim, A.: Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincare method. Meccanica 45(1), 1–6 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. El-Dib, Y.O.: Homotopy perturbation for excited nonlinear equations. Sci. Eng. Appl. 2(1), 96–108 (2017)

    Google Scholar 

  10. El-Dib, Y.O.: Multiple scales homotopy perturbation method for nonlinear oscillators. Nonlinear Sci. Lett. A 8(4), 352–364 (2017)

    Google Scholar 

  11. El-Dib, Y.O.: Periodic solution and stability behavior for nonlinear oscillator having a cubic nonlinearity time-delayed. Int. Annuls Sci. 5(1), 12–25 (2018)

    Article  Google Scholar 

  12. Mondal, Md.M.H.; Molla, Md.H.U.; Abdur Razzak, Md.; Alam, M.S.: A new analytical approach for solving quadratic nonlinear oscillators. Alex. Eng. J. 56, 629–634 (2017)

  13. Wu, B.S.; Lim, C.W.; He, L.H.: A new method for approximate analytical solutions to nonlinear oscillations of natural systems. Nonlinear Dyn. 32, 1–13 (2003)

    Article  MATH  Google Scholar 

  14. Ganji, D.D.; Karimpour, S.; Ganji, S.S.: Approximate analytical solutions to nonlinear oscillations of non-natural systems using He’s energy balance method. Prog. Electromagn. Res. M 5, 43–54 (2008)

    Article  Google Scholar 

  15. Barari, A.; Kimiaeifar, A.; Nejad, M.G.; Motevalli, M.; Sfahani, M.G.: A closed form solution for nonlinear oscillators frequencies using amplitude–frequency formulation. Shock Vib. 19, 1415–1426 (2012)

    Article  Google Scholar 

  16. Abul-Ez, M.; Ismail, G.M.; El-Moshneb, M.M.: Analytical solutions for free vibration of strongly nonlinear oscillators. Inf. Sci. Lett. 4(2), 101–105 (2015)

    Google Scholar 

  17. Ganji, S.S.; Ganji, D.D.; Babazadeh, H.; Karimpour, S.: Variational approach method for nonlinear oscillations of the motion of a rigid rocking back and forth and cubic-quintic Duffing oscillators. Prog. Electromagn. Res. M 4, 23–32 (2008)

    Article  Google Scholar 

  18. Khan, Y.; Wu, Q.; Askari, H.; Saadatnia, Z.; Kalami-Yazdi, M.: Nonlinear vibration analysis of a rigid rod on a circular surface via Hamiltonian approach. Math. Comput. Appl. 15(5), 974–977 (2010)

    MATH  Google Scholar 

  19. Ghasemi, S.E.; Zolfagharian, A.; Ganji, D.D.: Study on motion of rigid rod on a circular surface using MHPM. Propuls. Power Res. 3(3), 159–164 (2014)

    Article  Google Scholar 

  20. Hosen, Md.A.: Approximate solutions of the equation of motion’s of the rigid rod which rocks on a circular surface without slipping. Ain Shams Eng. J. 5, 895–899 (2014)

  21. Ali, F.; Sheikh, N.A.; Khan, I.; Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42, 2565–2572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, H.; Poole, C.; Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley, New York (2000)

    MATH  Google Scholar 

  23. El-Dib, Y.O.: Stability of a strongly displacement time-delayed Duffing oscillator by the multiple scales-homotopy perturbation method. J. Appl. Comput. Mech. 4(4), 260–274 (2018)

    Google Scholar 

  24. Kurtz, D.C.: A sufficient condition for all the roots of a polynomial to be real. Am. Math. Mon. 99(3), 259–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Brain Tumor Society (US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusry O. El-Dib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dib, Y.O., Moatimid, G.M. Stability Configuration of a Rocking Rigid Rod over a Circular Surface Using the Homotopy Perturbation Method and Laplace Transform. Arab J Sci Eng 44, 6581–6591 (2019). https://doi.org/10.1007/s13369-018-03705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03705-6

Keywords

Navigation