Skip to main content
Log in

Effect of Strontium Doping on the Band Gap of \(\hbox {CeO}_{2}\) Nanoparticles Synthesized Using Facile Co-precipitation

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Pure, 3 mol% and 5 mol% Sr-doped cerium oxide nanoparticles were synthesized by facile aqueous co-precipitation method using cerium nitrate hexahydrate and strontium chloride hexahydrate as the precursors without using any capping agent. The synthesized material was characterized by XRD, SEM, EDX, TEM, Raman spectroscopy and UV–Vis spectroscopic techniques. SEM analysis showed agglomeration of the particles. The Debye–Scherrer analysis revealed fluorite structure of the synthesized material with crystallite size in 6–10 nm range. TEM confirmed the spherical morphology of the particles and particle size distribution in the range of 5–8 nm. UV–Vis spectroscopic study revealed that Sr-doping led to increase in the band gap from 3.2 to 3.7 eV and shifting of absorption edge to the lower wavelength. The blue shift in the band gap with the dopant concentration shows that the band gap of doped cerium oxide nanoparticles can be tuned with variation in the dopant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tok, A.I.Y.; Boey, F.Y.C.; Dong, Z.; Sun, X.L.: Hydrothermal synthesis of \(\text{ CeO }_{2}\) nano-particles. Mater. Process. Technol. 190, 217–222 (2007)

    Article  Google Scholar 

  2. Marina, O.A.; Bagger, C.; Primdahl, S.; Mogensen, M.: Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. Solid State Ionics 123, 199–208 (1999)

    Article  Google Scholar 

  3. Trovarelli, A.; De Leitenburg, C.; Boaro, M.; Dolcetti, G.: The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999)

    Article  Google Scholar 

  4. Li, R.X.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T.: Synthesis and UV-shielding properties of ZnO- and CaO-doped \(\text{ CeO }_{2}\) via soft solution chemical process. Solid State Ionics 151, 235–241 (2002)

    Article  Google Scholar 

  5. Masui, T.; Hirai, H.; Hamada, R.; Imanaka, N.; Adachi, G.; Sakatac, T.; Mori, H.: Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride. J. Mater. Chem. 13, 622–627 (2002)

    Article  Google Scholar 

  6. Hu, C.; Zhang, Z.; Liu, H.; Gao, P.; Wang, Z.L.: Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnology 17, 5983–5987 (2006)

    Article  Google Scholar 

  7. Araujo, V.D.; Avansi, W.; de Carvalho, H.B.; Moreira, M.L.; Longo, E.; Ribeiro, C.; Bernardi, M.I.B.: \(\text{ CeO }_{2}\) nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. Cryst. Eng. Comm. 14, 1150–1154 (2012)

    Article  Google Scholar 

  8. Liu, I.; Hon, M.H.; Teoh, L.G.: Structure and optical properties of CeO2 nanoparticles synthesized by precipitation. J. Electron. Mater. 42, 2536–2541 (2013)

    Article  Google Scholar 

  9. Saranya, J.; Ranjith, K.S.; Saravanan, P.; Mangalaraj, D.; Kumar, R.T.R.: Cobalt-doped cerium oxide nanoparticles: enhanced photocatalytic activity under UV and visible light irradiation. Mater. Sci. Semicond. Process. 26, 218–224 (2014)

    Article  Google Scholar 

  10. Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H.: Shape-selective synthesis of oxygen storage behavior of ceria nanopolyhedra nanorods and nanocubes. J. Phys. Chem. B 109, 24380–24385 (2005)

    Article  Google Scholar 

  11. Xufeng, G.; Chunlin, C.; Shiyuan, R.; Jian, Z.; Dangsheng, S.: Structural effects of cerium oxides on their thermal stability and catalytic performance in propane oxidation dehydrogenation. Chin. J. Catal. 33, 1059–1063 (2012)

    Google Scholar 

  12. Herrling, T.; Seifert, M.; Jung, K.: Cerium oxide: future UV filters in sunscreen. SOFW-J. 12, 10–14 (2013)

    Google Scholar 

  13. Goubin, F.; Rocquefelte, X.; Whangbo, M.H.; Montardi, Y.; Brec, R.; Jobic, S.: Experimental and theoretical characterization of the optical properties of \(\text{ CeO }_{2}\), \(\text{ SrCeO }_{3}\), and \(\text{ Sr }_{2}\text{ CeO }_{4}\) containing \(\text{ Ce }^{4+}\) \((\text{ f }^{0})\) ions. Chem. Mater. 16, 662–669 (2004)

    Article  Google Scholar 

  14. Smijs, T.G.; Pavel, S.: Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 95–112 (2011)

    Article  Google Scholar 

  15. Minamidate, Y.; Yin, S.; Sato, T.: Synthesis and characterization of plate-like ceria particles for cosmetic application. Mater. Chem. Phys. 123, 516–520 (2010)

    Article  Google Scholar 

  16. Prabaharan, D.M.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, S.: Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater. Res. 19(2), 478–482 (2016)

    Article  Google Scholar 

  17. Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T.P.: Synthesis of cerium oxide \((\text{ CeO }_{2})\) nanoparticles using simple CO-precipitation method. Rev. Mex. Fis. E. 62, 496–499 (2016)

    Google Scholar 

  18. Liang, H.; Raitano, J.M.; He, G.; Akey, A.J.; Herman, I.P.; Zhang, L.; Chan, S.W.: Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 42, 299–307 (2012)

    Article  Google Scholar 

  19. Le Gal, A.; Abanades, S.: Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J. Phys. Chem. C 116(25), 13516–13523 (2012)

    Article  Google Scholar 

  20. Kumar, A.; Babu, S.; Karakoti, A.S.; Schulte, A.; Seal, S.: Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25, 10998–11007 (2009)

    Article  Google Scholar 

  21. Ferreira, V.J.; Tavares, P.; Figueiredo, J.L.; Faria, J.L.: Effect of Mg, Ca and Sr on CeO2 based catalysts for oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. Ind. Eng. Chem. Res. 51, 10535–10541 (2012)

    Article  Google Scholar 

  22. Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.: Photocatalytic degradation of methyl orange by \(\text{ CeO }_{2}\) and Fe-doped \(\text{ CeO }_{2}\) films under visible light irradiation. Sci. Rep. 4, 1–20 (2014)

    Google Scholar 

  23. Shirasaka, H.; Kisanuki, T.; Hirata, Y.; Matsunaga, N.; Sameshima, S.: Synthesis of gadolinium-doped ceria nanoparticles by electrolysis of aqueous solutions. J. Ceram. Process. Res. 14, 332–336 (2013)

    Google Scholar 

  24. Wang, H.F.; Li, H.Y.; Gong, X.Q.; Guo, Y.L.; Lu, G.Z.; Hu, P.: Oxygen vacancy formation in \(\text{ CeO }_{2}\) and \(\text{ Ce }_{(1--x)}\text{ Zr }_{(x)}\text{ O }_{2}\) solid solutions: electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 14(48), 16521–16535 (2012)

    Article  Google Scholar 

  25. Manikantan, J.; Ramalingam, H.B.; Shekar, B.C.; Murugan, B.; Kumar, R.R.; Santhoshi, J.S.: Wide band gap of strontium doped hafnium oxide nanoparticles for optoelectronic device applications—synthesis and characterization. Mater. Lett. 186, 42–44 (2017)

    Article  Google Scholar 

  26. Menon, A.S.; Kalarikkal, N.; Thomas, S.: Studies on structural and optical properties of ZnO and Mn- doped ZnO nanopowders. Ind. J. Nano. Sci. 1, 16–24 (2013)

    Google Scholar 

  27. Takeda, Y.; Mafuné, F.: Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution. Chem. Phys. Lett. 599, 110–115 (2014)

    Article  Google Scholar 

  28. Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T.: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes. Mater. Chem. Phys. 75(28), 39–44 (2002)

    Google Scholar 

  29. Ouhaibi, A.; Ghamnia, M.; Dahamni, M.A.; Heresanu, V.; Fauquet, C.; Tonneau, D.: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci. Adv. Mater. Devices 3, 29–36 (2018)

    Article  Google Scholar 

  30. Jaiswal, N.; Singh, N.K.; Kumar, D.; Parkash, O.: Ceria co-doped with calcium (Ca) and strontium (Sr): a potential candidate as a solid electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sour. 20, 45–54 (2014)

    Google Scholar 

  31. Matovic, B.; Bucevac, D.; Jiraborvornpongsa, N.; Yoshida, K.; Yano, T.: Synthesis and characterization of nanometric strontium-doped ceria solid solutions via glycine-nitrate procedure. J. Ceram. Soc. Jpn. 120(2), 69–73 (2012)

    Article  Google Scholar 

  32. Ali, S.R.; Chandra, P.; Latwal, M.; Jain, S.K.; Bansal, V.K.: Growth of cadmium hexacyanidoferrate (III) nanocubes and its application in voltammetric determination of morphine. Bull. Chem. Soc. Jpn. 84(12), 1355–1361 (2011)

    Article  Google Scholar 

  33. Ali, S.R.; Chandra, P.; Latwal, M.; Jain, S.K.; Bansal, V.K.; Singh, S.P.: Synthesis of nickel hexacyanoferrate nanoparticles and their potential as heterogeneous catalysts for the solvent-free oxidation of benzyl alcohol. Chin. J. Catal. 32(12), 1844–1849 (2011)

    Article  Google Scholar 

  34. Liang, H.; Raitano, J.M.; He, G.; Akey, A.J.; Herman, I.P.; Zhang, L.; Chan, S.W.: Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 47, 299–307 (2012)

    Article  Google Scholar 

  35. Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.W.; Herman, I.P.: Size-dependent properties of \(\text{ CeO }_{2-y}\) nanoparticles as studied by Raman scattering. Phys. Rev. B Condens. Matter. Mater. Phys. 64(2), 405–407 (2001)

    Google Scholar 

  36. Júnior, J.M.S.; Malta, L.F.B.; Garrido, F.M.S.; Ogasawara, T.; Medeiros, M.E.: Raman and Rietveld structural characterization of sintered alkaline earth doped ceria. Mater. Chem. Phys. 135, 957–964 (2012)

    Article  Google Scholar 

  37. Araujo, V.D.; Avansi, W.; de Carvalho, H.B.; Moreira, M.L.; Longo, E.; Ribeiro, C.; Bernardi, M.I.B.: \(\text{ CeO }_{2}\) nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. Cryst. Eng. Comm. 14, 1150–1154 (2012)

    Article  Google Scholar 

  38. Labrincha, J.A.; Tobaldi, D.M.; Seabra, M.P.; Pullar, R.C.; Piccirillo, C.: W/Ag-co-doped titania nanopowders and their photocatalytic activity. Suranaree J. Sci. Technol. 20(3), 235–248 (2013)

    Google Scholar 

  39. Ramadoss, A.; Kim, S.J.: Synthesis and characterization of \(\text{ HfO }_{2}\) nanoparticles by sonochemical approach. J. Alloy. Compd. 544, 115–119 (2012)

    Article  Google Scholar 

  40. Mott, N.F.; Davis, E.A.: Electronic Processes in Non-Crystalline Materials, 2nd edn. Clarendon Press, Oxford (1979)

    Google Scholar 

  41. Kim, D.T.; Yu, K.S.; Kim, W.T.; Kim, C.D.; Park, H.L.: Observation of Burstein–Moss shift in heavily copper-doped CaS:Cu phosphor. J. Mater. Sci. Lett. 11, 886–887 (1992)

    Article  Google Scholar 

  42. Rekha, K.; Nirmala, M.; Manjula, G.; Anukaliani, A.: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B. Phy. Cond. Mat. 405(15), 3180–3185 (2010)

    Article  Google Scholar 

  43. Sharma, G.; Chawla, P.; Locha, S.P.; Singh, N.: Burstein Moss effect in nanocrystalline CaS: Ce. Bull. Mater. Sci. 34(4), 673–676 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors AK and AGS extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number RGP 1/49/39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Chandra Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.R., Kumar, R., Kalam, A. et al. Effect of Strontium Doping on the Band Gap of \(\hbox {CeO}_{2}\) Nanoparticles Synthesized Using Facile Co-precipitation. Arab J Sci Eng 44, 6295–6302 (2019). https://doi.org/10.1007/s13369-018-03700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03700-x

Keywords

Navigation