Skip to main content

Advertisement

Log in

Nanomechanical, Mechanical Responses and Characterization of Piezoelectric Nanoparticle-Modified Electrospun PVDF Nanofibrous Films

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Limitless implementations of nanofibrous membrane show the importance of understanding the nanomechanical responses for water purification and piezoelectric nanogenerator applications. Here, the polyvinylidene fluoride (PVDF) electrospun nanofibrous films doped by 0.01, 0.05 and 0.1 wt% of ZnO nanoparticles were prepared in the method of electrospinning. Characterizations of PVDF nanocomposite fibrous films were inspected using field emission scanning electron microscope, thermogravimetric analysis, water contact angle, uniaxial tensile test and nanoindentation technique. The influence of minimal concentration of piezoelectric nanoparticles on the morphological, water contact angle, dynamic water contact angle, piezoelectric, thermal and mechanical stabilities of nanocomposite fibrous films was examined. The nanoscale mechanical properties of the PVDF/ZnO nanofibrous films were performed by nanoindentation technique at different spots of nanofibrous mat to examine the elastic–plastic behavior of membranes. The eventual ZnO nanoparticle-modified nanofibrous membranes have been shown nano-level fibers, considerable hydrophilicity and preferable thermal, mechanical and piezoelectric properties. The doping of polymer by 0.1 wt% of ZnO nanoparticles exposed significant enhancement of thermal, mechanical and nanomechanical responses of the melting temperature 2% (170–\(173\,^{\circ }\hbox {C}\)), tensile strength 20% (2.418 MPa), elastic modulus 18% (2.418 GPa) and hardness 60% (235 MPa) and piezoelectric coefficient 13.42 pC/N of the nanofibrous films. These understandings of nanoscale properties are highly promising in the development of sensor and actuators, biomedical, energy harvesting and water filtration devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.; Cheng, X.; Fu, X.; Stefanini, C.; Dario, P.: Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectron. Eng. 88, 2251–2254 (2011)

    Article  Google Scholar 

  2. Park, J.M.; Gu, G.Y.; Wang, Z.J.; Kwon, D.J.; Shin, P.S.; Choi, J.Y.; Lawrence DeVries, K.: Mechanical and electrical properties of electrospun CNT/PVDF nanofiber for micro-actuator applications. Adv. Compos. Mater. 25, 305–316 (2016)

    Article  Google Scholar 

  3. Suja, P.S.; Reshmi, C.R.; Sagitha, P.; Sujith, A.: Electrospun nanofibrous membranes for water purification. Polym. Rev. 57, 467–504 (2017)

    Article  Google Scholar 

  4. Wang, H.; Ma, Y.; Cheng, B.; Kang, W.; Li, X.; Shi, L.; Cai, Z.; Zhuang, X.: Solution blown biofunctionalized poly(vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells. Electrochim. Acta 258, 24–33 (2017)

    Article  Google Scholar 

  5. Goh, Y.F.; Shakir, I.; Hussain, R.: Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013)

    Article  Google Scholar 

  6. Zhao, B.; Hamidinejad, M.; Zhao, C.; Li, R.; Wang, S.; Kazemi, Y.; Park, C.B.: A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J. Mater. Chem. A. (2018). https://doi.org/10.1039/C8TA05556D

  7. Zhao, B.; Zhao, C.; Wang, C.; Park, C.B.: Poly(vinylidene fluoride) foams: a promising low-K dielectric and heat-insulating material. J. Mater. Chem. C 6, 3065–3073 (2018). https://doi.org/10.1039/c8tc00547h

    Article  Google Scholar 

  8. Zhao, B.; Wang, S.; Zhao, C.; Li, R.; Hamidinejad, S.M.; Kazemi, Y.; Park, C.B.: Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon N. Y. 127, 469–478 (2018). https://doi.org/10.1016/j.carbon.2017.11.032

    Article  Google Scholar 

  9. Zhao, B.; Park, C.B.: Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954–6961 (2017). https://doi.org/10.1039/c7tc01865g

    Article  Google Scholar 

  10. Zhao, B.; Zhao, C.; Li, R.; Hamidinejad, S.M.; Park, C.B.: Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9, 20873–20884 (2017). https://doi.org/10.1021/acsami.7b04935

    Article  Google Scholar 

  11. Ma, H.; Hsiao, B.S.; Chu, B.: Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer (Guildf) 52, 2594–2599 (2011)

    Article  Google Scholar 

  12. Chinnappan, A.; Kim, H.: Nanocatalyst: electrospun nanofibers of PVDF—dicationic tetrachloronickelate(II) anion and their effect on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 37, 18851–18859 (2012)

    Article  Google Scholar 

  13. Huang, L.; Manickam, S.S.; McCutcheon, J.R.: Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J. Membr. Sci. 436, 213–220 (2013)

    Article  Google Scholar 

  14. Hou, H.; Gc, J.J.; Zeng, J.; Li, Q.; Reneker, D.H.; Greiner, A.; Cheng, S.Z.D.: Electrospun polyacrylonitrile nanofibcrs containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17, 967–973 (2005)

    Article  Google Scholar 

  15. Zhao, Z.; Li, J.; Yuan, X.; Li, X.; Zhang, Y.; Sheng, J.: Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 97, 466–474 (2005)

    Article  Google Scholar 

  16. Liang, S.; Xiao, K.; Mo, Y.; Huang, X.: A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Memb. Sci. 394–395, 184–192 (2012)

    Article  Google Scholar 

  17. Jia, H.; Wu, Z.; Liu, N.: Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plast. Rubber Compos. 46, 1–7 (2017)

    Article  Google Scholar 

  18. Shanthi, S.I.; Poovaragan, S.; Arularasu, M.V.; Nithya, S.; Sundaram, R.; Magdalane, C.M.; Kaviyarasu, K.; Maaza, M.: Optical, magnetic and photocatalytic activity studies of Li, Mg and Sr doped and undoped zinc oxide nanoparticles. J. Nanosci. Nanotechnol. 18, 5441–5447 (2018)

    Article  Google Scholar 

  19. Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q.: Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 19, 035028 (2009)

    Article  Google Scholar 

  20. Lai, C.Y.; Groth, A.; Gray, S.; Duke, M.: Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment. J. Membr. Sci. 449, 146–157 (2013)

    Article  Google Scholar 

  21. Zhao, C.; Wu, H.; Li, X.; Pan, F.; Li, Y.; Zhao, J.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B.: High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. J. Membr. Sci. 429, 409–417 (2013)

    Article  Google Scholar 

  22. Nili, H.; Kalantar-Zadeh, K.; Bhaskaran, M.; Sriram, S.: In situ nanoindentation: probing nanoscale multifunctionality. Prog. Mater. Sci. 58, 1–29 (2013)

    Article  Google Scholar 

  23. Meza, L.R.; Das, S.; Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014)

    Article  Google Scholar 

  24. Chalker, P.R.; Bull, S.J.; Rickerby, D.S.: A review of the methods for the evaluation of coating-substrate adhesion. Mater. Sci. Eng. A 140, 583–592 (1991)

    Article  Google Scholar 

  25. Fu, W.E.; Chang, Y.Q.; Chang, C.W.; Yao, C.K.; Der, L.J.: Mechanical properties of ultra-thin HfO2films studied by nano scratches tests. Thin Solid Films 529, 402–406 (2013)

    Article  Google Scholar 

  26. Hodzic, A.; Stachurski, Z.H.; Kim, J.K.: Nano-indentation of polymer—glass interfaces. Part I. Experimental and mechanical analysis. Polymer (Guildf) 41, 6895–6905 (2000)

    Article  Google Scholar 

  27. Tan, E.P.S.; Lim, C.T.: Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 84, 1603–1605 (2004)

    Article  Google Scholar 

  28. Liu, Z.H.; Pan, C.T.; Lin, L.W.; Lai, H.W.: Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A Phys. 193, 13–24 (2013)

    Article  Google Scholar 

  29. Baniasadi, M.; Xu, Z.; Moreno, S.; Daryadel, S.; Cai, J.; Naraghi, M.; Minary-Jolandan, M.: Effect of thermomechanical post-processing on chain orientation and crystallinity of electrospun P(VDF-TrFE) nanofibers. Polymer (UK) 118, 223–235 (2017)

    Article  Google Scholar 

  30. Baniasadi, M.; Xu, Z.; Hong, S.; Naraghi, M.; Minary-Jolandan, M.: Thermo-electromechanical behavior of piezoelectric nanofibers. ACS Appl. Mater. Interfaces 8, 2540–2551 (2016)

    Article  Google Scholar 

  31. Naraghi, M.; Chasiotis, I.; Kahn, H.; Wen, Y.; Dzenis, Y.: Novel method for mechanical characterization of polymeric nanofibers. Rev. Sci. Instrum. 78, 085108 (2007)

    Article  Google Scholar 

  32. Oliver, W.C.; Pharr, G.M.; Introduction, I.: An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  33. Oliver, W.C.; Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  34. Hang, Y.; Liu, G.; Huang, K.; Jin, W.: Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. J. Membr. Sci. 494, 205–215 (2015)

    Article  Google Scholar 

  35. Jin, T.; Niu, X.; Xiao, G.; Wang, Z.; Zhou, Z.; Yuan, G.; Shu, X.: Effects of experimental variables on PMMA nano-indentation measurements. Polym. Test. 41, 1–6 (2015)

    Article  Google Scholar 

  36. Mani, M.R.; Gebrekrstos, A.; Madras, G.; Pötschke, P.; Bose, S.: PVDF-MWNT interactions control process induced \(\upbeta \)-lamellar morphology and orientation in the nanocomposites. Phys. Chem. Chem. Phys. 20, 24821–24831 (2018). https://doi.org/10.1039/C8CP03739F

    Article  Google Scholar 

  37. Martins, P.; Lopes, A.C.; Lanceros-Mendez, S.: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  Google Scholar 

  38. Kim, Y.S.; Xie, Y.; Wen, X.; Wanga, S.; Kim, S.J.; Song, H.K.; Wanga, Z.L.: Highly porouspiezoelectricPVDF membraneaseffectivelithiumion transferchannelsforenhanced self-charging powercell. Nano Energy 14, 77–86 (2014). https://doi.org/10.1016/j.nanoen.2015.01.006

    Article  Google Scholar 

  39. Noei, H.; Qiu, H.; Wang, Y.; Löffler, E.; Wöll, C.; Muhler, M.: The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)

    Article  Google Scholar 

  40. Celebioglu, A.; Yildiz, Z.I.; Uyar, T.: Electrospun crosslinked poly-cyclodextrin nanofibers: highly efficient molecular filtration thru host-guest inclusion complexation. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  41. Huang, L.; Arena, J.T.; McCutcheon, J.R.: Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J. Membr. Sci. 499, 352–360 (2016)

    Article  Google Scholar 

  42. Bae, J.; Baek, I.; Choi, H.: Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017). https://doi.org/10.1016/j.cej.2016.08.125

    Article  Google Scholar 

  43. Chipara, M.; Lozano, K.; Hernandez, A.; Chipara, M.: TGA analysis of polypropylene-carbon nanofibers composites. Polym. Degrad. Stab. 93, 871–876 (2008)

    Article  Google Scholar 

  44. Shin, I.H.; Hong, S.; Lim, S.J.; Son, Y.S.; Kim, T.H.: Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Ind. Eng. Chem. 46, 103–110 (2017)

    Article  Google Scholar 

  45. Wu, M.; Huang, H.X.; Tong, J.: Enhancing \(\upbeta \)-phase content and tensile properties in poly(vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion. Mater. Des. 108, 761–768 (2016)

    Article  Google Scholar 

  46. Asai, H.; Kikuchi, M.; Shimada, N.; Nakane, K.: Effect of melt and solution electrospinning on the formation and structure of poly(vinylidene fluoride) fibres. RSC Adv. 7, 17593–17598 (2017)

    Article  Google Scholar 

  47. Kancheva, M.; Toncheva, A.; Manolova, N.; Rashkov, I.: Enhancing the mechanical properties of electrospun polyester mats by heat treatment. Express Polym. Lett. 9, 49–65 (2015)

    Article  Google Scholar 

  48. Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H.: Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24, 405401 (2013)

    Article  Google Scholar 

  49. Hong, J.; He, Y.: Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 302, 71–79 (2012)

    Article  Google Scholar 

  50. McKee, C.T.; Last, J.A.; Russell, P.; Murphy, C.J.: Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 17, 155–164 (2011)

    Article  Google Scholar 

  51. Callister, W.; Rethwisch, D.: Materials Science and Engineering: An Introduction. Wiley, New York (2007)

    Google Scholar 

  52. Singh, H.H.; Khare, N.: Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 51, 216–222 (2018). https://doi.org/10.1016/j.nanoen.2018.06.055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satthiyaraju, M., Ramesh, T. Nanomechanical, Mechanical Responses and Characterization of Piezoelectric Nanoparticle-Modified Electrospun PVDF Nanofibrous Films. Arab J Sci Eng 44, 5697–5709 (2019). https://doi.org/10.1007/s13369-018-03694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03694-6

Keywords

Navigation