Skip to main content
Log in

Compressibility of Compacted Clays Mixed with a Wide Range of Bentonite for Engineered Barriers

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Compacted clay–bentonite mixtures are often used as compacted blocks and landfills in high-level radioactive waste repositories and clay liners, respectively. A better understanding of their compressibility behaviour is essential to guarantee the disposal safety. In this study, mixtures of clays and bentonite are used to investigate the compressibility and compaction behaviour. Three natural clays were selected with different physical characteristics, and clay–bentonite mixtures were prepared by mixing the bentonite content up to 50%. A series of standard compaction tests and consolidation tests were performed in the laboratory; the samples for the consolidation test were prepared at the optimum moisture contents and maximum dry unit weights. With increasing bentonite content, the liquid limit, plasticity index, optimum moisture content, initial void ratio and compression index of natural clays increase and maximum dry unit weight and yield stress decrease. It was observed that the effect of bentonite on geotechnical characteristics pronounced when bentonite content exceeded 10%. Correlations were also proposed to estimate the compression characteristics and compression curves of compacted clays using three physical parameters such as the initial void ratio, optimum moisture content and maximum dry unit weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

Bentonite content

\(C_\mathrm{c}\) :

Compression index

e :

Void ratio

\(e_{{0}}\) :

Initial void ratio

\(e_{{100}}\) :

Void ratio at 100 kPa pressure

\(e_{{1000}}\) :

Void ratio at 1000 kPa pressure

\(e_\mathrm{L}\) :

Void ratio at liquid limit

EICL:

Extended intrinsic compression line

GSD:

Grain-size distribution

\(G_\mathrm{s}\) :

Specific gravity

HLW:

High-level radioactive waste

\(I_\mathrm{P}\) :

Plasticity index

\(I_\mathrm{v}\) :

Void index proposed by Burland [49]

\(I_\mathrm{vc}\) :

Void index proposed for compacted clay–bentonite mixture

ICL:

Intrinsic compression line

NCCL:

Normalized compacted compression line

MSW:

Municipal solid waste

\(w_\mathrm{opt}\) :

Optimum moisture content

\(w_\mathrm{L}\) :

Liquid limit

\(w_\mathrm{n}\) :

Natural moisture content

\(w_\mathrm{p}\) :

Plastic limit

\(\sigma _\mathrm{v}'\) :

Effective consolidation pressure

\(\sigma _\mathrm{y}\) :

Yield stress

\(\gamma _\mathrm{dmax}\) :

Maximum dry unit weight

References

  1. NBS: China Statistical Yearbook. NBS, Beijing (2013)

    Google Scholar 

  2. HRC Report: Australia’s Uranium: Greenhouse Friendly Fuel for an Energy Hungry World, Chapter No. 5. HRC, Sydney (2006)

    Google Scholar 

  3. Frändegård, P.; Krook, J.; Svensson, N.; Eklund, M.: A novel approach for environmental evaluation of landfill mining. J. Clean. Prod. 5, 24–34 (2013)

    Article  Google Scholar 

  4. Baille, W.; Tripath, S.; Schanz, T.: Swelling pressures and one-dimensional compressibility behaviour of bentonite at large pressures. Appl. Clay Sci. 48(3), 324–333 (2010)

    Article  Google Scholar 

  5. Wang, Q.; Tang, A.M.; Cui, Y.J.; Delage, P.; Barnichon, J.D.; Ye, W.M.: The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture. Soils Found. 53(2), 232–45 (2013a)

    Article  Google Scholar 

  6. Wang, Q.; Tang, A.M.; Cui, Y.J.; Delage, P.; Barnichon, J.D.; Ye, W.M.: Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration. Eng. Geol. 163, 67–76 (2013b)

    Article  Google Scholar 

  7. Chen, Y.G.; Jia, L.Y.; Li, Q.; Ye, W.M.; Cui, Y.J.; Chen, B.: Swelling deformation of compacted GMZ bentonite experiencing chemical cycles of sodium–calcium exchange and salinization–desalinization effect. Appl. Clay Sci. 141, 55–63 (2017)

    Article  Google Scholar 

  8. Yustres, A.; Jenni, A.; Asensio, L.; Pintado, X.; Koskinen, K.; Navarro, V.; Wersin, P.: Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches. Appl. Clay Sci. 141, 280–291 (2017)

    Article  Google Scholar 

  9. Daniel, D.E.; Wu, Y.K.: Compacted clay liners and covers for arid sites. J Geotech. Eng. 119(2), 223–237 (1993)

    Article  Google Scholar 

  10. Khalid, U.; Rehman, Z.U.: Evaluation of compaction parameters of fine-grained soils using standard and modified efforts. Int. J. Geo-Eng. 9(15), 1–17 (2018)

    Google Scholar 

  11. Yong, R.N.; Boonsinsuk, P.; Wong, G.: Formulation of backfill material for a nuclear fuel waste disposal vault. Can. Geotech. J. 23(2), 216–228 (1986)

    Article  Google Scholar 

  12. Lloret, A.; Villar, M.V.; Sanchez, M.; Gens, A.; Pintado, X.; Alonso, E.E.: Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1), 27–40 (2003)

    Article  Google Scholar 

  13. Chen, Y.G.; Cui, Y.J.; Tang, A.M.; Wang, Q.; Ye, W.M.: A preliminary study on hydraulic resistance of bentonite/host-rock seal interface. Géotechnique 64(12), 997–1002 (2014)

    Article  Google Scholar 

  14. Lloret, A.; Villar, M.V.: Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys. Chem. Earth 32, 701–715 (2007)

    Article  Google Scholar 

  15. Agus, S.S.; Arifin, Y.F.; Tripathy, S.; Schanz, T.: Swelling pressure–suction relationship of heavily compacted bentonite-sand mixtures. Acta Geotech. 8, 155–165 (2013)

    Article  Google Scholar 

  16. Kaufhold, S.; Baille, W.; Schanz, T.; Dohrmann, R.: About differences of swelling pressure–dry density relations of compacted bentonites. Appl. Clay sci. 107, 52–61 (2015)

    Article  Google Scholar 

  17. Villar, M.V.; Lloret, A.: Influence of dry density and water content on the swelling of a compacted bentonite. Appl. Clay Sci. 39, 38–49 (2008)

    Article  Google Scholar 

  18. Srikanth, V.; Mishra, A.K.: A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand. Int. J. Geosynth. Ground Eng. 2(3), 1–10 (2016)

    Google Scholar 

  19. D’Appolonia, D.J.: Soil-bentonite slurry trench cutoffs. J. Geotech. Geoenviron. Eng. 106(4), 399–417 (1980)

    Google Scholar 

  20. Li, X.; Cai, G.; Puppala, A.J.; Liu, S.: Compression behaviour of reconstituted soils mixed with bentonite for a cutoff wall in a landfill site. Environ. Earth Sci. 77, 390 (2018)

    Article  Google Scholar 

  21. McCandless, R.M.; Bodocsi, A.: Hydraulic characteristics of model soil–bentonite slurry cutoff walls. In: Proceedings of 5th National Conference of Hazardous Wastes and Hazardous Materials, HMCRI, Silver Spring, Md. pp. 198–201 (1988)

  22. Bohnhoff, G.L.; Shackelford, C.D.: Consolidation behaviour of polymerized bentonite-amended backfills. J. Geotech. Geoenviron. Eng. 140(5), 04013055 (2014)

    Article  Google Scholar 

  23. Filz, G.M.: Consolidation stresses in soil–bentonite backfilled trenches. In: Proceedings of 2nd International Congress on Environmental Geotechnics, A.A. Balkema, Rotterdam, The Netherlands, pp. 497–502 (1996)

  24. Ruffing, D.G.; Evans, J.C.; Malusis, M.A.: Prediction of earth pressures in soil–bentonite cutoff walls. In: Fratta, D.O., Puppala, A.J., Muhunthan, B. (eds.) GeoFlorida 2010: Advances in Analysis Modeling & Design GSP, vol. 199, pp. 2416–2425. ASCE, Reston (2010)

    Chapter  Google Scholar 

  25. Tang, Q.; Katsumi, T.; Inui, T.L.Z.: Membrane behaviour of bentonite-amended compacted clay. Soil Found. 54(3), 329–344 (2014)

    Article  Google Scholar 

  26. Dafalla, M.A.: The compressibility and swell of mixtures for sand–clay liners. Adv. Mater. Sci. Eng. 3181794, 9 (2017)

    Google Scholar 

  27. Kumar, S.; Yong, W.L.: Effect of bentonite on compacted clay landfill barriers. Soil Sed. Contam. 11(1), 71–89 (2002)

    Article  Google Scholar 

  28. Fan, R.D.; Du, Y.J.; Reddy, K.R.; Liu, S.Y.; Yang, Y.L.: Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: initial assessment. Appl. Clay Sci. 101, 119–127 (2014)

    Article  Google Scholar 

  29. Du, Y.J.; Fan, R.D.; Reddy, K.R.; Liu, S.Y.; Yang, Y.L.: Impacts of presence of lead contamination in clayey soil–calcium bentonite cutoff wall backfills. Appl. Clay Sci. 108, 111–122 (2015)

    Article  Google Scholar 

  30. Komine, H.: Predicting hydraulic conductivity of sand bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Eng. Geol. 114, 123–134 (2010)

    Article  Google Scholar 

  31. Stroes-Gascoyne, S.: Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL’s underground research laboratory. Appl. Clay Sci. 47(1–2), 36–42 (2010)

    Article  Google Scholar 

  32. Agus, S.S.; Schanz, T.; Fredlund, D.G.: Measurements of suction versus water content for bentonite–sand mixtures. Can. Geotech. J. 47, 583–594 (2010)

    Article  Google Scholar 

  33. Saba, S.; Cui, Y.J.; Tang, A.M.; Barnichon, J.D.: Investigation of the swelling behaviour of compacted bentonite–sand mixture by mock-up tests. Can. Geotech. J. 51(12), 1399–1412 (2014)

    Article  Google Scholar 

  34. Keramatikerman, M.; Chegenizadeh, A.; Nikraz, H.: An investigation into effect of sawdust treatment on permeability and compressibility of soil-bentonite slurry cut-off wall. J. Clean. Prod. 162(6), 1–6 (2017)

    Article  Google Scholar 

  35. Chegenizadeh, A.; Keramatikerman, M.; Dalla, S.G.; Nikraz, H.: Influence of recycled tire amendment on the mechanical behavior of soil–bentonite cut-off walls. J. Clean. Prod. 177, 507–515 (2018)

    Article  Google Scholar 

  36. Zeng, L.L.; Hong, Z.S.; Cui, Y.J.: Determining the virgin compression lines of reconstituted clays at different initial water contents. Can. Geotech. J. 52(9), 1408–1415 (2015)

    Article  Google Scholar 

  37. Horpibulsuk, S.; Yangsukkaseam, N.; Chinkulkijniwat, A.; Du, Y.J.: Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Appl. Clay Sci. 52, 150–159 (2011)

    Article  Google Scholar 

  38. Li, X.; Cai, G.; Puppala, A.J.; Liu, S.: Compression behavior of reconstituted soils mixed with bentonite for a cutoff wall in a landfill site. Envion. Earth Sci. 77(10), 390 (2018)

    Article  Google Scholar 

  39. Shi, X.S.; Yin, J.; Feng, W.; Chen, W.: Creep coefficient of binary sand–bentonite mixtures in oedometer testing using mixture theory. Int. J. Geomech. 18(12), 04018159 (2018)

    Article  Google Scholar 

  40. Chu, C.; Wu, Z.; Deng, Y.; Chen, Y.; Wang, Q.: Intrinsic compression behavior of remolded sand–clay mixture. Can. Geotech. J. 54(7), 926–932 (2017)

    Article  Google Scholar 

  41. Zhao, M.Z.; Luo, Q.; Wei, M.; Jiang, L.W.: Evaluation for intrinsic compressibility of reconstituted clay using liquid limit, initial water content and plasticity index. Eur. J. Envion. Civ. Eng. (2017). https://doi.org/10.1080/19648189.2017.1347069

  42. Fard, M.K.; Shariatmadari, N.; Keramati, M.; Kalarijani, H.J.: An experimental investigation on the mechanical behavior of MSW. Int. J. Civ. Eng. 12(4), 292–303 (2013)

    Google Scholar 

  43. Srikanth, V.; Mishra, A.K.: Atterberg limits of sand-bentonite mixes and the influence of sand composition. In: Stalin, V.K., Muttharam, M. (eds.) Geotechnical Characterisation and Geoenvironmental Engineering, pp. 139–145. Springer, Singapore (2019)

    Chapter  Google Scholar 

  44. Ma, J.; Qian, M.; Yu, C.; Yu, X.: Compressibility evaluation of reconstituted clays with various initial water contents. J. Perform. Constr. Facil. 32(5), 04018077 (2018)

    Article  Google Scholar 

  45. Chegenizadeh, A.; Keramatikerman, M.; Dalla, G.; Nikraz, H.: Influence of recycled tyre amendment on the mechanical behaviour of soil–bentonite cut-off walls. J. Clean. Prod. 177, 507–515 (2018)

    Article  Google Scholar 

  46. Vadlamudi, S.; Mishra, A.K.: Consolidation characteristics of sand–bentonite mixtures and the influence of sand particle size. J. Hazard. Toxic Radioact. Waste 22(4), 06018001 (2018)

    Article  Google Scholar 

  47. Shariatmadari, N.; Sadeghpour, A.H.; Razaghian, F.: Effects of aging on shear strength behavior of municipal solid waste. Int. J. Civ. Eng. 12(3), 226–237 (2014)

    Google Scholar 

  48. Sharma, B.; Deka, P.: A study on compressibility, swelling and permeability behaviour of bentonite-sand mixture. In: Stalin, V., Muttharam, M. (eds.) Geotechnical Characterisation and Geoenvironmental Engineering. Lecture Notes in Civil Engineering, vol. 16. Springer, Singapore (2019)

  49. Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)

    Article  Google Scholar 

  50. ASTM D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA (2017). https://doi.org/10.1520/D2487-17

  51. ASTM D422-63(2007)e2: Standard Test Method for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA (2007). https://doi.org/10.1520/D0422-63R07E02

  52. ASTM D4318-17e1: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA (2017). https://doi.org/10.1520/D4318-17E01

  53. ASTM D698-12e2: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ftlbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA (2012). https://doi.org/10.1520/D0698-12E02

  54. ASTM D2435 / D2435M-11: Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International, West Conshohocken, PA (2011). https://doi.org/10.1520/D2435_D2435M-11

  55. Sridharan, A.; Abraham, B.M.; Jose, B.T.: Improved technique for estimation of preconsolidation pressure. Géotechnique 41(2), 263–268 (1991)

    Article  Google Scholar 

  56. Terzaghi, K.; Peck, R.B.; Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)

    Google Scholar 

  57. Lamb, T.W.: The structure of compacted clay. J. Soil Mech. Found. Div. ASCE 84(2), 1–34 (1958)

    Google Scholar 

  58. Skempton, A.W.; Jones, O.T.: Notes on the compressibility of clays. Q. J. Geol. Soc. 100(1–4), 119–135 (1944)

    Article  Google Scholar 

  59. Terzaghi, K.; Peck, R.B.: Soil Mechanics in Engineering Practice, 1st edn. Wiley, New York (1948)

    Google Scholar 

  60. Yoon, G.L.; Kim, B.T.; Jeon, S.S.: Empirical correlations of compression index for marine clay from regression analysis. Can. Geotech. J. 41(06), 1213–1221 (2004)

    Article  Google Scholar 

  61. Tsuchida, T.: A new concept of e-log p relationship for clays. In: Proceedings of 9th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Bangkok, Thailand, pp. 87–90 (1991)

  62. Sridharan, A.; Nagaraj, H.: Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties. Can. Geotech. J. 37(3), 712–722 (2000)

    Article  Google Scholar 

  63. Nath, A.; DeDalal, S.: The role of plasticity index in predicting compression behaviour of clays. Electron. J. Geotech. Eng. 9, 1–7 (2004)

    Google Scholar 

  64. Tiwari, B.; Ajmera, B.: New correlation equations for compression index of remoulded clays. J. Geotech. Geoenviron. Eng. 138, 757–762 (2013)

    Article  Google Scholar 

  65. Khalid, U.; Liao, C.C.; Ye, G.-L.; Yadav, S.K.: Sustainable improvement of soft marine clay using low cement content: a multi-scale experimental investigation. Const. Build. Mater. 166, 634–646 (2018)

    Article  Google Scholar 

  66. Rehman, Z.U.; Khalid, U.; Farooq, K.; Mujtaba, H.: Prediction of CBR value from index properties of different soils. Technic. J. (University of Engineering and Technology, Taxila, Pakistan) 22(2), 17–26 (2017)

    Google Scholar 

  67. Bowles, J.E.: Physical and Geotechnical Properties of Soils. McGill-Hill, New York (1989)

    Google Scholar 

  68. Zeng, L.L.; Hong, Z.S.; Gao, Y.F.: Practical estimation of compression behaviour of dredged clays with three physical parameters. Eng. Geol. 217(30), 102–109 (2017)

    Article  Google Scholar 

  69. Hong, Z.S.; Yin, J.; Cui, Y.J.: Compression behaviour of reconstituted soils at high initial water contents. Géotechnique 60(9), 691–700 (2010)

    Article  Google Scholar 

  70. Rehman, Z.U.; Khalid, U.; Farooq, K.; Mujtaba, H.: On yield stress of compacted clays. Int. J. Geo-Eng. 9, 21 (2018). https://doi.org/10.1186/s40703-018-0090-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia ur Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, U., Rehman, Z.u., Liao, C. et al. Compressibility of Compacted Clays Mixed with a Wide Range of Bentonite for Engineered Barriers. Arab J Sci Eng 44, 5027–5042 (2019). https://doi.org/10.1007/s13369-018-03693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03693-7

Keywords

Navigation