Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 5027–5042 | Cite as

Compressibility of Compacted Clays Mixed with a Wide Range of Bentonite for Engineered Barriers

  • Usama Khalid
  • Zia ur RehmanEmail author
  • Chencong Liao
  • Khalid Farooq
  • Hassan Mujtaba
Research Article - Civil Engineering
  • 56 Downloads

Abstract

Compacted clay–bentonite mixtures are often used as compacted blocks and landfills in high-level radioactive waste repositories and clay liners, respectively. A better understanding of their compressibility behaviour is essential to guarantee the disposal safety. In this study, mixtures of clays and bentonite are used to investigate the compressibility and compaction behaviour. Three natural clays were selected with different physical characteristics, and clay–bentonite mixtures were prepared by mixing the bentonite content up to 50%. A series of standard compaction tests and consolidation tests were performed in the laboratory; the samples for the consolidation test were prepared at the optimum moisture contents and maximum dry unit weights. With increasing bentonite content, the liquid limit, plasticity index, optimum moisture content, initial void ratio and compression index of natural clays increase and maximum dry unit weight and yield stress decrease. It was observed that the effect of bentonite on geotechnical characteristics pronounced when bentonite content exceeded 10%. Correlations were also proposed to estimate the compression characteristics and compression curves of compacted clays using three physical parameters such as the initial void ratio, optimum moisture content and maximum dry unit weight.

Keywords

Clay–bentonite mixtures Compressibility Yield stress Initial void ratio Compaction characteristics Correlation models 

List of symbols

BC

Bentonite content

\(C_\mathrm{c}\)

Compression index

e

Void ratio

\(e_{{0}}\)

Initial void ratio

\(e_{{100}}\)

Void ratio at 100 kPa pressure

\(e_{{1000}}\)

Void ratio at 1000 kPa pressure

\(e_\mathrm{L}\)

Void ratio at liquid limit

EICL

Extended intrinsic compression line

GSD

Grain-size distribution

\(G_\mathrm{s}\)

Specific gravity

HLW

High-level radioactive waste

\(I_\mathrm{P}\)

Plasticity index

\(I_\mathrm{v}\)

Void index proposed by Burland [49]

\(I_\mathrm{vc}\)

Void index proposed for compacted clay–bentonite mixture

ICL

Intrinsic compression line

NCCL

Normalized compacted compression line

MSW

Municipal solid waste

\(w_\mathrm{opt}\)

Optimum moisture content

\(w_\mathrm{L}\)

Liquid limit

\(w_\mathrm{n}\)

Natural moisture content

\(w_\mathrm{p}\)

Plastic limit

\(\sigma _\mathrm{v}'\)

Effective consolidation pressure

\(\sigma _\mathrm{y}\)

Yield stress

\(\gamma _\mathrm{dmax}\)

Maximum dry unit weight

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NBS: China Statistical Yearbook. NBS, Beijing (2013)Google Scholar
  2. 2.
    HRC Report: Australia’s Uranium: Greenhouse Friendly Fuel for an Energy Hungry World, Chapter No. 5. HRC, Sydney (2006)Google Scholar
  3. 3.
    Frändegård, P.; Krook, J.; Svensson, N.; Eklund, M.: A novel approach for environmental evaluation of landfill mining. J. Clean. Prod. 5, 24–34 (2013)CrossRefGoogle Scholar
  4. 4.
    Baille, W.; Tripath, S.; Schanz, T.: Swelling pressures and one-dimensional compressibility behaviour of bentonite at large pressures. Appl. Clay Sci. 48(3), 324–333 (2010)CrossRefGoogle Scholar
  5. 5.
    Wang, Q.; Tang, A.M.; Cui, Y.J.; Delage, P.; Barnichon, J.D.; Ye, W.M.: The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture. Soils Found. 53(2), 232–45 (2013a)CrossRefGoogle Scholar
  6. 6.
    Wang, Q.; Tang, A.M.; Cui, Y.J.; Delage, P.; Barnichon, J.D.; Ye, W.M.: Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration. Eng. Geol. 163, 67–76 (2013b)CrossRefGoogle Scholar
  7. 7.
    Chen, Y.G.; Jia, L.Y.; Li, Q.; Ye, W.M.; Cui, Y.J.; Chen, B.: Swelling deformation of compacted GMZ bentonite experiencing chemical cycles of sodium–calcium exchange and salinization–desalinization effect. Appl. Clay Sci. 141, 55–63 (2017)CrossRefGoogle Scholar
  8. 8.
    Yustres, A.; Jenni, A.; Asensio, L.; Pintado, X.; Koskinen, K.; Navarro, V.; Wersin, P.: Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches. Appl. Clay Sci. 141, 280–291 (2017)CrossRefGoogle Scholar
  9. 9.
    Daniel, D.E.; Wu, Y.K.: Compacted clay liners and covers for arid sites. J Geotech. Eng. 119(2), 223–237 (1993)CrossRefGoogle Scholar
  10. 10.
    Khalid, U.; Rehman, Z.U.: Evaluation of compaction parameters of fine-grained soils using standard and modified efforts. Int. J. Geo-Eng. 9(15), 1–17 (2018)Google Scholar
  11. 11.
    Yong, R.N.; Boonsinsuk, P.; Wong, G.: Formulation of backfill material for a nuclear fuel waste disposal vault. Can. Geotech. J. 23(2), 216–228 (1986)CrossRefGoogle Scholar
  12. 12.
    Lloret, A.; Villar, M.V.; Sanchez, M.; Gens, A.; Pintado, X.; Alonso, E.E.: Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1), 27–40 (2003)CrossRefGoogle Scholar
  13. 13.
    Chen, Y.G.; Cui, Y.J.; Tang, A.M.; Wang, Q.; Ye, W.M.: A preliminary study on hydraulic resistance of bentonite/host-rock seal interface. Géotechnique 64(12), 997–1002 (2014)CrossRefGoogle Scholar
  14. 14.
    Lloret, A.; Villar, M.V.: Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys. Chem. Earth 32, 701–715 (2007)CrossRefGoogle Scholar
  15. 15.
    Agus, S.S.; Arifin, Y.F.; Tripathy, S.; Schanz, T.: Swelling pressure–suction relationship of heavily compacted bentonite-sand mixtures. Acta Geotech. 8, 155–165 (2013)CrossRefGoogle Scholar
  16. 16.
    Kaufhold, S.; Baille, W.; Schanz, T.; Dohrmann, R.: About differences of swelling pressure–dry density relations of compacted bentonites. Appl. Clay sci. 107, 52–61 (2015)CrossRefGoogle Scholar
  17. 17.
    Villar, M.V.; Lloret, A.: Influence of dry density and water content on the swelling of a compacted bentonite. Appl. Clay Sci. 39, 38–49 (2008)CrossRefGoogle Scholar
  18. 18.
    Srikanth, V.; Mishra, A.K.: A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand. Int. J. Geosynth. Ground Eng. 2(3), 1–10 (2016)Google Scholar
  19. 19.
    D’Appolonia, D.J.: Soil-bentonite slurry trench cutoffs. J. Geotech. Geoenviron. Eng. 106(4), 399–417 (1980)Google Scholar
  20. 20.
    Li, X.; Cai, G.; Puppala, A.J.; Liu, S.: Compression behaviour of reconstituted soils mixed with bentonite for a cutoff wall in a landfill site. Environ. Earth Sci. 77, 390 (2018)CrossRefGoogle Scholar
  21. 21.
    McCandless, R.M.; Bodocsi, A.: Hydraulic characteristics of model soil–bentonite slurry cutoff walls. In: Proceedings of 5th National Conference of Hazardous Wastes and Hazardous Materials, HMCRI, Silver Spring, Md. pp. 198–201 (1988)Google Scholar
  22. 22.
    Bohnhoff, G.L.; Shackelford, C.D.: Consolidation behaviour of polymerized bentonite-amended backfills. J. Geotech. Geoenviron. Eng. 140(5), 04013055 (2014)CrossRefGoogle Scholar
  23. 23.
    Filz, G.M.: Consolidation stresses in soil–bentonite backfilled trenches. In: Proceedings of 2nd International Congress on Environmental Geotechnics, A.A. Balkema, Rotterdam, The Netherlands, pp. 497–502 (1996)Google Scholar
  24. 24.
    Ruffing, D.G.; Evans, J.C.; Malusis, M.A.: Prediction of earth pressures in soil–bentonite cutoff walls. In: Fratta, D.O., Puppala, A.J., Muhunthan, B. (eds.) GeoFlorida 2010: Advances in Analysis Modeling & Design GSP, vol. 199, pp. 2416–2425. ASCE, Reston (2010)CrossRefGoogle Scholar
  25. 25.
    Tang, Q.; Katsumi, T.; Inui, T.L.Z.: Membrane behaviour of bentonite-amended compacted clay. Soil Found. 54(3), 329–344 (2014)CrossRefGoogle Scholar
  26. 26.
    Dafalla, M.A.: The compressibility and swell of mixtures for sand–clay liners. Adv. Mater. Sci. Eng. 3181794, 9 (2017)Google Scholar
  27. 27.
    Kumar, S.; Yong, W.L.: Effect of bentonite on compacted clay landfill barriers. Soil Sed. Contam. 11(1), 71–89 (2002)CrossRefGoogle Scholar
  28. 28.
    Fan, R.D.; Du, Y.J.; Reddy, K.R.; Liu, S.Y.; Yang, Y.L.: Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: initial assessment. Appl. Clay Sci. 101, 119–127 (2014)CrossRefGoogle Scholar
  29. 29.
    Du, Y.J.; Fan, R.D.; Reddy, K.R.; Liu, S.Y.; Yang, Y.L.: Impacts of presence of lead contamination in clayey soil–calcium bentonite cutoff wall backfills. Appl. Clay Sci. 108, 111–122 (2015)CrossRefGoogle Scholar
  30. 30.
    Komine, H.: Predicting hydraulic conductivity of sand bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Eng. Geol. 114, 123–134 (2010)CrossRefGoogle Scholar
  31. 31.
    Stroes-Gascoyne, S.: Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL’s underground research laboratory. Appl. Clay Sci. 47(1–2), 36–42 (2010)CrossRefGoogle Scholar
  32. 32.
    Agus, S.S.; Schanz, T.; Fredlund, D.G.: Measurements of suction versus water content for bentonite–sand mixtures. Can. Geotech. J. 47, 583–594 (2010)CrossRefGoogle Scholar
  33. 33.
    Saba, S.; Cui, Y.J.; Tang, A.M.; Barnichon, J.D.: Investigation of the swelling behaviour of compacted bentonite–sand mixture by mock-up tests. Can. Geotech. J. 51(12), 1399–1412 (2014)CrossRefGoogle Scholar
  34. 34.
    Keramatikerman, M.; Chegenizadeh, A.; Nikraz, H.: An investigation into effect of sawdust treatment on permeability and compressibility of soil-bentonite slurry cut-off wall. J. Clean. Prod. 162(6), 1–6 (2017)CrossRefGoogle Scholar
  35. 35.
    Chegenizadeh, A.; Keramatikerman, M.; Dalla, S.G.; Nikraz, H.: Influence of recycled tire amendment on the mechanical behavior of soil–bentonite cut-off walls. J. Clean. Prod. 177, 507–515 (2018)CrossRefGoogle Scholar
  36. 36.
    Zeng, L.L.; Hong, Z.S.; Cui, Y.J.: Determining the virgin compression lines of reconstituted clays at different initial water contents. Can. Geotech. J. 52(9), 1408–1415 (2015)CrossRefGoogle Scholar
  37. 37.
    Horpibulsuk, S.; Yangsukkaseam, N.; Chinkulkijniwat, A.; Du, Y.J.: Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Appl. Clay Sci. 52, 150–159 (2011)CrossRefGoogle Scholar
  38. 38.
    Li, X.; Cai, G.; Puppala, A.J.; Liu, S.: Compression behavior of reconstituted soils mixed with bentonite for a cutoff wall in a landfill site. Envion. Earth Sci. 77(10), 390 (2018)CrossRefGoogle Scholar
  39. 39.
    Shi, X.S.; Yin, J.; Feng, W.; Chen, W.: Creep coefficient of binary sand–bentonite mixtures in oedometer testing using mixture theory. Int. J. Geomech. 18(12), 04018159 (2018)CrossRefGoogle Scholar
  40. 40.
    Chu, C.; Wu, Z.; Deng, Y.; Chen, Y.; Wang, Q.: Intrinsic compression behavior of remolded sand–clay mixture. Can. Geotech. J. 54(7), 926–932 (2017)CrossRefGoogle Scholar
  41. 41.
    Zhao, M.Z.; Luo, Q.; Wei, M.; Jiang, L.W.: Evaluation for intrinsic compressibility of reconstituted clay using liquid limit, initial water content and plasticity index. Eur. J. Envion. Civ. Eng. (2017).  https://doi.org/10.1080/19648189.2017.1347069
  42. 42.
    Fard, M.K.; Shariatmadari, N.; Keramati, M.; Kalarijani, H.J.: An experimental investigation on the mechanical behavior of MSW. Int. J. Civ. Eng. 12(4), 292–303 (2013)Google Scholar
  43. 43.
    Srikanth, V.; Mishra, A.K.: Atterberg limits of sand-bentonite mixes and the influence of sand composition. In: Stalin, V.K., Muttharam, M. (eds.) Geotechnical Characterisation and Geoenvironmental Engineering, pp. 139–145. Springer, Singapore (2019)CrossRefGoogle Scholar
  44. 44.
    Ma, J.; Qian, M.; Yu, C.; Yu, X.: Compressibility evaluation of reconstituted clays with various initial water contents. J. Perform. Constr. Facil. 32(5), 04018077 (2018)CrossRefGoogle Scholar
  45. 45.
    Chegenizadeh, A.; Keramatikerman, M.; Dalla, G.; Nikraz, H.: Influence of recycled tyre amendment on the mechanical behaviour of soil–bentonite cut-off walls. J. Clean. Prod. 177, 507–515 (2018)CrossRefGoogle Scholar
  46. 46.
    Vadlamudi, S.; Mishra, A.K.: Consolidation characteristics of sand–bentonite mixtures and the influence of sand particle size. J. Hazard. Toxic Radioact. Waste 22(4), 06018001 (2018)CrossRefGoogle Scholar
  47. 47.
    Shariatmadari, N.; Sadeghpour, A.H.; Razaghian, F.: Effects of aging on shear strength behavior of municipal solid waste. Int. J. Civ. Eng. 12(3), 226–237 (2014)Google Scholar
  48. 48.
    Sharma, B.; Deka, P.: A study on compressibility, swelling and permeability behaviour of bentonite-sand mixture. In: Stalin, V., Muttharam, M. (eds.) Geotechnical Characterisation and Geoenvironmental Engineering. Lecture Notes in Civil Engineering, vol. 16. Springer, Singapore (2019)Google Scholar
  49. 49.
    Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)CrossRefGoogle Scholar
  50. 50.
    ASTM D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA (2017).  https://doi.org/10.1520/D2487-17
  51. 51.
    ASTM D422-63(2007)e2: Standard Test Method for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA (2007).  https://doi.org/10.1520/D0422-63R07E02
  52. 52.
    ASTM D4318-17e1: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA (2017).  https://doi.org/10.1520/D4318-17E01
  53. 53.
    ASTM D698-12e2: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ftlbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA (2012).  https://doi.org/10.1520/D0698-12E02
  54. 54.
    ASTM D2435 / D2435M-11: Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International, West Conshohocken, PA (2011).  https://doi.org/10.1520/D2435_D2435M-11
  55. 55.
    Sridharan, A.; Abraham, B.M.; Jose, B.T.: Improved technique for estimation of preconsolidation pressure. Géotechnique 41(2), 263–268 (1991)CrossRefGoogle Scholar
  56. 56.
    Terzaghi, K.; Peck, R.B.; Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)Google Scholar
  57. 57.
    Lamb, T.W.: The structure of compacted clay. J. Soil Mech. Found. Div. ASCE 84(2), 1–34 (1958)Google Scholar
  58. 58.
    Skempton, A.W.; Jones, O.T.: Notes on the compressibility of clays. Q. J. Geol. Soc. 100(1–4), 119–135 (1944)CrossRefGoogle Scholar
  59. 59.
    Terzaghi, K.; Peck, R.B.: Soil Mechanics in Engineering Practice, 1st edn. Wiley, New York (1948)Google Scholar
  60. 60.
    Yoon, G.L.; Kim, B.T.; Jeon, S.S.: Empirical correlations of compression index for marine clay from regression analysis. Can. Geotech. J. 41(06), 1213–1221 (2004)CrossRefGoogle Scholar
  61. 61.
    Tsuchida, T.: A new concept of e-log p relationship for clays. In: Proceedings of 9th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Bangkok, Thailand, pp. 87–90 (1991)Google Scholar
  62. 62.
    Sridharan, A.; Nagaraj, H.: Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties. Can. Geotech. J. 37(3), 712–722 (2000)CrossRefGoogle Scholar
  63. 63.
    Nath, A.; DeDalal, S.: The role of plasticity index in predicting compression behaviour of clays. Electron. J. Geotech. Eng. 9, 1–7 (2004)Google Scholar
  64. 64.
    Tiwari, B.; Ajmera, B.: New correlation equations for compression index of remoulded clays. J. Geotech. Geoenviron. Eng. 138, 757–762 (2013)CrossRefGoogle Scholar
  65. 65.
    Khalid, U.; Liao, C.C.; Ye, G.-L.; Yadav, S.K.: Sustainable improvement of soft marine clay using low cement content: a multi-scale experimental investigation. Const. Build. Mater. 166, 634–646 (2018)CrossRefGoogle Scholar
  66. 66.
    Rehman, Z.U.; Khalid, U.; Farooq, K.; Mujtaba, H.: Prediction of CBR value from index properties of different soils. Technic. J. (University of Engineering and Technology, Taxila, Pakistan) 22(2), 17–26 (2017)Google Scholar
  67. 67.
    Bowles, J.E.: Physical and Geotechnical Properties of Soils. McGill-Hill, New York (1989)Google Scholar
  68. 68.
    Zeng, L.L.; Hong, Z.S.; Gao, Y.F.: Practical estimation of compression behaviour of dredged clays with three physical parameters. Eng. Geol. 217(30), 102–109 (2017)CrossRefGoogle Scholar
  69. 69.
    Hong, Z.S.; Yin, J.; Cui, Y.J.: Compression behaviour of reconstituted soils at high initial water contents. Géotechnique 60(9), 691–700 (2010)CrossRefGoogle Scholar
  70. 70.
    Rehman, Z.U.; Khalid, U.; Farooq, K.; Mujtaba, H.: On yield stress of compacted clays. Int. J. Geo-Eng. 9, 21 (2018).  https://doi.org/10.1186/s40703-018-0090-2

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Civil Engineering Department, State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Civil Engineering DepartmentCOMSATS University IslamabadSahiwalPakistan
  3. 3.State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingChina
  4. 4.Department of Civil EngineeringUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations