Skip to main content

Effect of Oil Palm Fiber Content on the Physical and Mechanical Properties and Microstructure of High-Calcium Fly Ash Geopolymer Paste

Abstract

This paper investigates the effect of oil palm fiber content on the physical and mechanical properties and microstructure of high-calcium fly ash geopolymer paste. The oil palm fiber was added to the mixture at 0, 1, 2, and 3% by weight of fly ash. Sodium hydroxide (NaOH) and sodium silicate \((\hbox {Na}_{2}\hbox {SiO}_{3})\) were used as liquid alkaline activators. The bulk density, compressive strength, flexural strength, pore size distribution, scanning electron microscopy, and thermal conductivity of geopolymer paste were determined. Test results showed that the bulk density of high-calcium geopolymer paste containing oil palm fibers decreased with increasing fiber content. The increase oil palm fiber content decreased the compressive strength of geopolymer paste but enhanced the flexural strength and toughness and changed the failure behavior of geopolymer composite. In addition, the pore size and total porosity also increased with the increase in fiber content, while the thermal conductivity was reduced. The addition of oil palm fiber can improve the flexural strength and thermal conductivity of geopolymer paste and could thus be developed into a fiber-reinforced composite for construction purposes.

This is a preview of subscription content, access via your institution.

References

  1. Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P.: Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Constr. Build. Mater. 25(11), 4095–104 (2011)

    Article  Google Scholar 

  2. Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N.: Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Produc. 136(Part B), 119–132 (2016)

    Google Scholar 

  3. Akashi, O.; Hanaoka, T.; Matsuoka, Y.; Kainuma, M.: A projection for global \(\text{ CO }_{2}\) emissions from the industrial sector through 2030 based on activity level and technology changes. Energy 36(4), 1855–1867 (2011)

    Article  Google Scholar 

  4. Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S.: \(\text{ CO }_{2}\) capture using fly ash from coal fired power plant and applications of \(\text{ CO }_{2}\)-captured fly ash as a mineral admixture for concrete. J. Environ. Manag. 170, 70–78 (2016)

    Article  Google Scholar 

  5. Kroehong, W.; Damrongwiriyanupap, N.; Sinsiri, T.; Jaturapitakkul, C.: The effect of palm oil fuel ash as a supplementary cementitious material on chloride penetration and microstructure of blended cement paste. Arab. J. Sci. Eng. 41(12), 4799–4808 (2016)

    Article  Google Scholar 

  6. Cheewaket, T.; Jaturapitakkul, C.; Chalee, W.: Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Constr. Build. Mater. 24(8), 1352–1357 (2010)

    Article  Google Scholar 

  7. Chatveera, B.; Lertwattanaruk, P.: Evaluation of sulfate resistance of cement mortars containing black rice husk ash. J. Environ. Manag. 90(3), 1435–1441 (2009)

    Article  Google Scholar 

  8. Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanaka, S.: The effect of adding \(\text{ nano }-\text{ SiO }_{2}\) and \(\text{ nano-Al }_{2}\text{ O }_{3}\) on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 55, 58–65 (2014)

    Article  Google Scholar 

  9. Davidovits, J.: Chemistry of geopolymeric systems. Terminology. In: Proceedings of the Geopolymer 99 Conference, Saint-Quentin, pp. 9–40 (1999)

  10. Rattanasak, U.; Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078 (2009)

    Article  Google Scholar 

  11. Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F.: Alkali-activated slag mortars: mechanical strength behaviour. Cem. Concr. Res. 29(8), 1313–1321 (1991)

    Article  Google Scholar 

  12. Palomo, A.; Grutzeck, M.W.; Blanco, M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999)

    Article  Google Scholar 

  13. Swanepoel, J.C.; Strydom, C.A.: Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 17(8), 1143–1148 (2002)

    Article  Google Scholar 

  14. Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U.: Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29(2), 539–543 (2009)

    Article  Google Scholar 

  15. Phoo-ngernkham, T.; Hanjitsuwan, S.; Suksiripattanapong, C.; Thumrongvut, J.; Suebsuk, J.; Sookasem, S.: Flexural strength of notched concrete beam filled with alkali-activated binders under different types of alkali solutions. Constr. Build. Mater. 127, 673–678 (2016)

    Article  Google Scholar 

  16. Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F.: Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 109, 17–24 (2016)

    Article  Google Scholar 

  17. Chindaprasirt, P.; Chalee, W.: Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 63, 303–310 (2014)

    Article  Google Scholar 

  18. Guades, E.J.: Experimental investigation of the compressive and tensile strengths of geopolymer mortar: the effect of sand/fly ash (S/FA) ratio. Constr. Build. Mater. 127, 484–493 (2016)

    Article  Google Scholar 

  19. Assaedi, H.; Shaikh, F.U.A.; Low, I.M.: Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr. Build. Mater. 123, 541–552 (2016)

    Article  Google Scholar 

  20. Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis Metselaar, H.S.; Jumaat, M.Z.: Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73–81 (2016)

    Article  Google Scholar 

  21. Wei, J.; Meyer, C.: Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. J. Mater. Sci. 49(21), 7604–7619 (2014)

    Article  Google Scholar 

  22. Chen, R.; Ahmari, S.; Zhang, L.: Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 49(6), 2548–2558 (2014)

    Article  Google Scholar 

  23. Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Sankar, K.; Kriven, W.M.: Geopolymer-bamboo composite—a novel sustainable construction material. Constr. Build. Mater. 123, 501–507 (2016)

    Article  Google Scholar 

  24. Raut, A.N.; Gomez, C.P.: Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Constr. Build. Mater. 126, 476–483 (2016)

    Article  Google Scholar 

  25. Abd. Aziz, F.N.A.; Bida, S.M.; Nasir, N.A.M.; Jaafar, M.S.: Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb. Constr. Build. Mater. 73, 544–550 (2014)

    Article  Google Scholar 

  26. Alomayri, T.; Shaikh, F.U.A.; Low, I.M.: Characterisation of cotton fibre-reinforced geopolymer composites. Compos. B: Eng. 50, 1–6 (2013)

    Article  Google Scholar 

  27. Bledzki, A.K.; Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  Google Scholar 

  28. Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M.: The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 61(10), 1437–1447 (2001)

    Article  Google Scholar 

  29. Lertwattanaruk, P.; Suntijitto, A.: Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 94, 664–669 (2015)

    Article  Google Scholar 

  30. Alonge, O.R.; Ramli, M.B.; Lawalson, T.J.: Properties of hybrid cementitious composite with metakaolin, nanosilica and epoxy. Constr. Build. Mater. 155, 740–750 (2017)

    Article  Google Scholar 

  31. ASTM C618: A standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. In: Annual Book of ASTM Standards, 04.02, pp. 310–313 (2001)

  32. Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P.: Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Constr. Build. Mater. 91, 1–8 (2015)

    Article  Google Scholar 

  33. ASTM D882: Standard test method for tensile properties of thin plastic sheeting. In: Annual Book of ASTM Standards, pp. 1–10 (2002)

  34. ASTM C20: Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. In: Annual Book of ASTM Standards, 15.01 (2005)

  35. ASTMC109: Standard test method for compressive strength of hydraulic 557 cement mortars (using 2-in. or [50 mm] cube specimens). In: Annual Book of 558 ASTM Standards, 04.01, pp. 83–88 (2001)

  36. ASTMC348: Standard test method for flexural strength of hydraulic-cement mortars. In: Annual Book of ASTM Standards, 04.01 (2002)

  37. JSCE SF-4: Method of test for flexural strength and flexural toughness of fiber reinforced concrete Japan Society of Civil Engineering. Standard SF-4, pp. 58–66 (1984)

  38. Kim, D.j.; Naaman, A.E.; El-Tawil, S.: Comparative flexural behavior of four fiber reinforced cementitious composites. Cem. Concr. Compos. 30(10), 917–928 (2008)

  39. Washburn, E.W.: Note on method of determining the distribution of pore size in porous materials. Proc. Natl. Acad. Sci. 7(4), 115–116 (1921)

    Article  Google Scholar 

  40. ASTM C518: A. Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. In: Annual Book ASTM Standards, vol. 4(1), pp. 153–167 (2004)

  41. Xie, X.; Zhou, Z.; Jiang, M.; Xu, X.; Wang, Z.; Hui, D.: Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. B Eng. 78, 153–161 (2015)

    Article  Google Scholar 

  42. Alomayri, T.; Shaikh, F.U.A.; Low, I.M.: Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites. Compos. B: Eng. 60, 36–42 (2014)

    Article  Google Scholar 

  43. Bentur, A.; Mindess, S.: Fiber Reinforced Cementitious Composite. Elsevier, New York (1990)

    Google Scholar 

  44. Masi, G.; Rickard, W.D.A.; Bignozzi, M.C.; van Riessen, A.: The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. B: Eng. 76, 218–228 (2015)

    Article  Google Scholar 

  45. Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T.: Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 21(7), 1534–1541 (2007)

    Article  Google Scholar 

  46. Mindress, S.; Young, J.F.: Concrete (1981)

  47. Wongsa, A.; Boonserm, K.; Waisurasingha, C.; Sata, V.; Chindaprasirt, P.: Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J. Clean. Prod. 148, 49–59 (2017)

    Article  Google Scholar 

  48. Fongang, R.T.T.; Pemndje, J.; Lemougna, P.N.; Melo, U.C.; Nanseu, C.P.; Nait-Ali, B.: Cleaner production of the lightweight insulating composites: microstructure, pore network and thermal conductivity. Energy Build. 107, 113–22 (2015)

    Article  Google Scholar 

  49. Torkittikul, P.; Nochaiya, T.; Wongkeo, W.; Chaipanich, A.: Utilization of coal bottom ash to improve thermal insulation of construction material. J. Mater. Cycles Waste Manag. 19(1), 1–13 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported under research funding from the Faculty of Engineering and Architecture, Uthenthawai Campus, Rajamangala University of Technology Tawan-ok, Thailand. Appreciation is also extended to the Thailand Research Fund (TRF) for financial support under the Grant No. DPG618002 and the TRF New Researcher Scholar, Grant No. TRG 5880064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wunchock Kroehong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kroehong, W., Jaturapitakkul, C., Pothisiri, T. et al. Effect of Oil Palm Fiber Content on the Physical and Mechanical Properties and Microstructure of High-Calcium Fly Ash Geopolymer Paste. Arab J Sci Eng 43, 5215–5224 (2018). https://doi.org/10.1007/s13369-017-3059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3059-0

Keywords

  • Geopolymer
  • Oil palm fiber
  • Fly ash
  • Flexural strength
  • Pore size distribution
  • Thermal conductivity