Skip to main content

Advertisement

Log in

Experimental Measurements of Shale Fracture Conductivity Under Cyclic Loading

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Existing research on shale fracture conductivity is rather sparse and has not taken the effect of loading history into consideration. A splitting device was used to split the shale specimens along bedding, and a 3D scanner was used to characterize the fracture surface. Using a constant 0.3 MPa gas pressure, three shale specimens split by single fractures of different roughness were tested for gas flow during four loading–unloading cycles of 0–10 MPa. Test results show that fracture conductivity exhibited hysteresis similar to that observed in rock mechanics experiments. In addition, it is clear that fracture conductivity is smaller for fractures with rougher surfaces. Building on the cubic law and soil mechanics consolidation theory, a hydraulic aperture model for cyclic loading was developed that helps explain the influence of plastic deformation during loading and unloading on fracture conductivity. This model exhibited trends get the agreement with the data for the range of confining stresses used in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, L.; Hou, Z.M.; et al.: Numerical investigation of a low-efficient hydraulic fracturing operation in a tight gas reservoir in the North German Basin. J. Pet. Sci. Eng. 120, 119–129 (2014)

    Article  Google Scholar 

  2. Tripathi, D.; Pournik, P.; et al.: Effect of acid on productivity of fractured shale reservoirs. SPE 1922960 (2014)

  3. Zhou, T.; Zhang, S.C.; Feng, Y.; et al.: Experimental study of permeability characteristics for the cemented natural fracture of the shale gas formation. J. Nat. Gas Sci. Eng. 29, 345–54 (2016)

    Article  Google Scholar 

  4. Lomize, G.M.: Filtratsiya v treshchinovatykh porodakh. Gosenergoizdat, Moscow (1951)

    Google Scholar 

  5. Kranz, R.L.; Frankel, A.D.; Englder, T.; et al.: The permeability of whole and jointed Barre Granite. Int. J. Rock Mech. Min. Sci. 16, 225–234 (1979)

    Article  Google Scholar 

  6. Gale, J.E.: The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. In: Issues in Rock Mechanics 23rd Symposium on Rock Mechanics, pp. 290–298 (1982)

  7. Tsang, Y.W.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20, 1209–15 (1984)

    Article  Google Scholar 

  8. Thompson, M.E.; Brown, S.R.: The effect of anisotropic surface roughness on flow and transport in fractures. J. Geophys. Res. 96(B13), 21923–21932 (1991)

    Article  Google Scholar 

  9. Bandis, S.; Lumsden, A.C.; Barton, N.: Fundamental of rock joint deformation. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 20, 249–268 (1983)

    Article  Google Scholar 

  10. Barton, N.; Bandis, S.; Bakhtar, K.: Strength, deformation and conductivity coupling of rock fractures. Int. J. Rock Mech. Min. Sci. 22, 121–40 (1985)

    Article  Google Scholar 

  11. Barton, N.; Quadros, E.F.: Joint aperture and roughness in the prediction of flow and groutability of rock masses. Int. J. Rock Mech. Min. Sci. 34, 3–4 (1997)

    Article  Google Scholar 

  12. Zimmerman, R.W.; Chen, D.W.; Cook, N.G.W.: The effect of contact area on the permeability of fractures. J. Hydrol. 139, 79–96 (1992)

    Article  Google Scholar 

  13. Zimmerman, R.W.; Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996)

    Article  Google Scholar 

  14. Guo, T.K.; Zhang, S.C.; Gao, J.; et al.: Experimental study of fracture permeability for stimulated reservoir volume (SRV) in shale formation. Transp. Porous Media 90, 525–42 (2013)

    Article  Google Scholar 

  15. Zhang, J.J.; Kamenov, A.; Zhu, D.; et al.: Measurement of realistic fracture conductivity in the Barnett shale. J. Unconv. Oil Gas Resour. 11, 44–52 (2015)

    Article  Google Scholar 

  16. Olsson, R.; Barton, N.: An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 38(3), 317–329 (2001)

    Article  Google Scholar 

  17. Zhou, L.; Hou, M.Z.: A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects. Int. J. Rock Mech. Min. Sci. 60, 370–80 (2013)

    Article  Google Scholar 

  18. Hickey, J.J.; Henk, B.: Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2TP Sims well, Wise County, Texas. AAPG Bull. 33(4), 437–443 (2007)

    Article  Google Scholar 

  19. Biot, M.A.: General theory of three—dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  20. Terzaghi, K.; Peck, R.B.; Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)

    Google Scholar 

  21. Li, H.; Lu, Y.; Zhou, L.; et al.: Experimental and model studies on loading path-dependent and nonlinear gas flow behavior in shale fractures. Rock Mech. Rock Eng. 2, 1–16 (2017)

    Google Scholar 

  22. Wyckoff, R.D.; Botset, H.G.; Muskat, M.; et al.: The measurement of the permeability of porous media for homogeneous fluids. Rev. Sci. Instrum. 4, 394 (1993)

    Article  Google Scholar 

  23. Roman, A.; Ahmadi, G.; Issen, K.A.; et al.: Permeability of fractured media under confining pressure: a simplified model. Open Pet. Eng. J. 5(1), 36–41 (2012)

    Article  Google Scholar 

  24. Witherspoon, J.S.Y.; Wang, K.I.; Gale, J.E.: Validity of cubic law for fluid-flow in a deformable rock fracture. Water Resour. Res. 16, 1016–24 (1980)

    Article  Google Scholar 

  25. Nist: Thermochemical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/. Accessed 20 Oct (2016)

  26. Goodman, R.E.; Taylor, R.L.; Brekke, T.A.: The mechanical properties of joints. In: Proceedings of the 3rd ISRM Congress, Held in Denver, USA 1A, pp. 127–140 (1974)

  27. Wood, D.M.: Soil Behavior and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiren Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tang, J., Lu, Y. et al. Experimental Measurements of Shale Fracture Conductivity Under Cyclic Loading. Arab J Sci Eng 43, 6315–6324 (2018). https://doi.org/10.1007/s13369-017-3032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3032-y

Keywords

Navigation