Skip to main content
Log in

Modified Grey Wolf Optimization Algorithm for Transmission Network Expansion Planning Problem

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Transmission network expansion planning (TNEP) problem is a large-scale, complex mixed integer nonlinear programming problem. The solution of TNEP problem is essential to fulfill the load demand in an economical manner. A grey wolf optimization (GWO) algorithm which is a nature-inspired metaheuristic algorithm is used to solve the TNEP problem. Further, a modified GWO is developed, and to validate its result, it is tested on 20 standard benchmark test functions. The basic and modified version of GWO algorithms is applied to solve TNEP problem for Graver’s six-bus and Brazilian 46-bus systems. The obtained results are compared with other state-of-the-art algorithms. The results demonstrate the accuracy as well as proficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero, R.; Monticelli, A.; Garcia, A.; Haffner, S.: Test systems and mathematical models for transmission network expansion planning. IEE Proc. Gener. Transm. Distrib. 149(1), 27–36 (2002)

    Article  Google Scholar 

  2. Lumbreras, S.; Ramos, A.: The new challenges to transmission expansion planning. Survey of recent practice and literature review. Electr. Power Syst. Res. 134, 19–29 (2016)

    Article  Google Scholar 

  3. Dey, Arindam; Pal, Anita; Pal, Tandra: Interval type 2 fuzzy set in fuzzy shortest path problem. Mathematics 4(4), 62 (2016)

    Article  MATH  Google Scholar 

  4. Dey, A.; Pal, A.: Prims algorithm for solving minimum spanning tree problem in fuzzy environment. Ann. Fuzzy Math. Inform. 12(3), 419–430 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Lotfi Asker Zadeh: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets versus probability. Proc. IEEE 68(3), 421–421 (1980)

    Article  MathSciNet  Google Scholar 

  7. Lee, C.W.; Simon, K.K.N.; Zhong, J.; Wu, F.F.: Transmission expansion planning from past to future. In Power Systems Conference and Exposition, 2006. PSCE’06. 2006 IEEE PES, pp. 257–265. IEEE (2006)

  8. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  9. Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.; Bansal, J.C.: Optimal placement and sizing of capacitor using limaçon inspired spider monkey optimization algorithm. Memetic Comput. 9(4), 311–331 (2017)

    Article  Google Scholar 

  10. Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala: Power law-based local search in spider monkey optimisation for lower order system modelling. Int. J. Syst. Sci. 48(1), 150–160 (2017)

    Article  MATH  Google Scholar 

  11. Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.: Fibonacci series-based local search in spider monkey optimisation for transmission expansion planning. Int. J. Swarm Intell. 3(2–3), 215–237 (2017)

    Article  MATH  Google Scholar 

  12. Guha, D.; Roy, P.K.; Banerjee, S.: Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 27, 97–115 (2016)

    Article  Google Scholar 

  13. Mohanty, Satyajit; Subudhi, Bidyadhar; Ray, Pravat Kumar: A new mppt design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans. Sustain. Energy 7(1), 181–188 (2016)

    Article  Google Scholar 

  14. El-Gaafary, A.A.M.; Mohamed, Y.S.; Hemeida, A.M.; Mohamed, A.A.: Grey wolf optimization for multi input multi output system. Univ. J. Commun. Netw. 3(1), 1–6 (2015)

    Article  Google Scholar 

  15. Emary, E.; Zawbaa, H.M.; Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)

    Article  Google Scholar 

  16. Das, S.; Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2010 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata (2011)

    Google Scholar 

  17. Romero, R.; Mantovani, J.R.S.; Rider, M.J.; et al.: Transmission-expansion planning using the DC model and nonlinear-programming technique. In: Generation, Transmission and Distribution, IEE Proceedings, Vol. 152, pp. 763–769. IET (2005)

  18. Romero, R.; Gallego, R.A.; Monticelli, A.: Transmission system expansion planning by simulated annealing. IEEE Trans. Power Syst. 11(1), 364–369 (1996)

    Article  Google Scholar 

  19. Baringo, L.; Baringo, A.: Astochastic adaptive robust optimization approach for the generation and transmission expansion planning. IEEE Trans. Power Syst. 99, 1–11 (2017)

    Google Scholar 

  20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University Press, Erciyes (2005)

  21. Storn, R.; Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute—Publications—TR (1995)

  22. Clerc, M.; Kennedy, J.: Standard PSO 2011. Particle Swarm Central Site. http://www.particleswarm.info (2011)

  23. Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala; Bansal, Jagdish Chand: Optimal power flow analysis using Lévy flight spider monkey optimisation algorithm. Int. J. Artif. Intell. Soft Comput. 5(4), 320–352 (2016)

    Article  Google Scholar 

  24. Garver, L.L.: Transmission network estimation using linear programming. IEEE Trans. Power Appar. Syst. 7, 1688–1697 (1970)

    Article  Google Scholar 

  25. Rathore, C.; Roy, R.; Sharma, U.; Patel, J.: Artificial bee colony algorithm based static transmission expansion planning. In: 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp. 1126–1131. IEEE (2013).

  26. Haffner, S.; Monticelli, A.; Garcia, A.; Romero, R.: Specialised branch-and-bound algorithm for transmission network expansion planning. IEE Proc. Gener. Transm. Distrib. 148(5), 482–488 (2001)

    Article  Google Scholar 

  27. Haffner, S.; Monticelli, A.; Garcia, A.; Mantovani, J.; Romero, R.: Branch and bound algorithm for transmission system expansion planning using a transportation model. IEE Proc. Gener. Transm. Distrib. 147(3), 149–156 (2000)

    Article  Google Scholar 

  28. Romero, R.; Monticelli, A.: A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

    Article  Google Scholar 

  29. Rider, M.J.; Garcia, A.V.; Romero, R.: Transmission system expansion planning by a branch-and-bound algorithm. IET Gener. Transm. Distrib. 2(1), 90–99 (2008)

    Article  Google Scholar 

  30. Faria, H.; Binato, S.; Resende, M.G.C.; Falcão, D.M.: Power transmission network design by greedy randomized adaptive path relinking. IEEE Trans. Power Syst. 20(1), 43–49 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Khandelwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, A., Bhargava, A., Sharma, A. et al. Modified Grey Wolf Optimization Algorithm for Transmission Network Expansion Planning Problem. Arab J Sci Eng 43, 2899–2908 (2018). https://doi.org/10.1007/s13369-017-2967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2967-3

Keywords

Navigation