Skip to main content
Log in

Enhanced Field-Emission Properties of Sol–Gel-Derived Nanostructured \(\hbox {SnO}_{2}\):F Thin Film for Vacuum Microelectronics

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanocrystalline fluorine-doped tin oxide thin film is synthesized by sol–gel-dip-coating technique. Hydrofluoric acid is used as the F-source, which has performed a simultaneous dual activity: (1) it has improved the conductivity by F-doping and (2) has increased the surface roughness via mild etching, both of which have improved the field-emission performance of the doped film over the undoped film. Electron microscopic image of \(\hbox {SnO}_{2}\):F film has revealed highly sharp emitter tips at the film surface, which has provided a very high geometrical field enhancement factor (\(\beta \sim 760\)) and a very low turn-on field (\(\sim \) 4.8 V \(\upmu \hbox {m}^{-1})\). The field-emission process follows the Fowler–Nordheim tunnelling of cold-electron emission. This simple and cost-effective approach can be very useful for surface nanostructuring of thin film-based field emitters with improved field-emission characteristics for vacuum microelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodie, I.; Schwoebel, P.R.: Vacuum microelectronic devices. Proc. IEEE 82, 1006 (1994)

    Article  Google Scholar 

  2. Fink, R.L.; Tol, Z.L.; Yaniv, Z.: The status and future of diamond thin film FED. Surf. Coat. Technol. 108/109, 570 (1998)

    Article  Google Scholar 

  3. Forbes, R.G.: Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism. Solid State Electron. 45, 779 (2001)

    Article  Google Scholar 

  4. Maity, R.; Banerjee, A.N.; Chattopadhyay, K.K.: Low-macroscopic field emission from fibrous ZnO thin film prepared by catalyst-free solution route. Appl. Surf. Sci. 236, 231 (2004)

    Article  Google Scholar 

  5. Banerjee, A.N.; Joo, S.W.: Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications. Nanotechnology 22, 365705 (2011)

    Article  Google Scholar 

  6. Anitha, V.C.; Banerjee, A.N.; Joo, S.W.; Min, B.K.: Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of a metallic Ti surface. Nanotechnology 26, 355705 (2015)

    Article  Google Scholar 

  7. Baranauskas, V.; Fontana, M.; Guo, Z.J.; Ceragioli, H.J.; Peterlevitz, A.C.: Field-emission properties of nanocrystalline tin oxide films. Sens. Actuators B: Chem. 107, 474–478 (2005)

    Article  Google Scholar 

  8. Huang, H.; Lim, C.K.; Tse, M.S.; Guo, J.; Tan, O.K.: \(\text{ SnO }_{2}\) nanorod arrays: low temperature growth, surface modification and field emission properties. Nanoscale 4, 1491–1496 (2012)

    Article  Google Scholar 

  9. Luo, S.H.; Wan, Q.; Liu, W.L.; Zhang, M.; Di, Z.F.; Wang, S.Y.; Song, Z.T.; Lin, C.L.; Dai, J.Y.: Vacuum electron field emission from \(\text{ SnO }_{2}\) nanowhiskers synthesized by thermal evaporation. Nanotechnology 15, 1424–1427 (2004)

    Article  Google Scholar 

  10. Zou, R.; Hu, J.; Zhang, Z.; Chen, Z.; Liao, M.: \(\text{ SnO }_{2}\) nanoribbons: excellent field-emitters. CrystEnggComm 13, 2289–2293 (2011)

    Article  Google Scholar 

  11. Zhang, X.; Chen, J.B.; Zhu, W.D.; Wang, C.W.: Enhanced field emission from hydrogenated \(\text{ SnO }_{2}\) nanoparticles embedded in \(\text{ TiO }_{2}\). J. Vac. Sci. Technol. B 32, 021808 (2014)

    Article  Google Scholar 

  12. Ahmed, S.F.; Ghosh, P.K.; Khan, S.; Mitra, M.K.; Chattopadhyay, K.K.: Low-macroscopic field emission from nanocrystalline Al doped \(\text{ SnO }_{2}\) thin films synthesized by sol–gel technique. Appl. Phys. A 86, 139 (2007)

    Article  Google Scholar 

  13. Banerjee, A.N.; Kundoo, S.; Saha, P.; Chattopadhyay, K.K.: Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by sol–gel method. J. Sol Gel Sci. Technol. 28, 105 (2003)

    Article  Google Scholar 

  14. Banerjee, A.N.; Chattopadhyay, K.K.: Introduction to Nanoscience and Nanotechnology. Prentice Hall, Delhi (2012)

    Google Scholar 

  15. JCPDS 1999 Powder Diffraction File Card 5-0467.

  16. Quadri, S.B.; Skelton, E.F.; Hsu, D.; Dinsmore, A.D.; Yang, J.; Gray, H.F.; Ratna, B.R.: Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 60, 9191 (1999)

    Article  Google Scholar 

  17. Moss, S.J.; Ledwith, A.: Chemistry of the Semiconductor Industry. Springer, New York (1989)

    Google Scholar 

  18. Manifacier, J.C.; Murcia, M.D.; Fillard, J.P.; Vicario, E.: Optical and electrical properties of \(\text{ SnO }_{2}\) thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 41, 127–135 (1977)

    Article  Google Scholar 

  19. Cachet, H.; Gamard, A.; Campet, G.; Jousseaumeb, B.; Toupance, T.: Tin dioxide thin films prepared from a new alkoxyfluorotin complex including a covalent Sn–F bond. Thin Solid Films 388, 41–49 (2001)

    Article  Google Scholar 

  20. Aghase, C.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.: Structural properties of \(\text{ SnO }_{2}\):F films deposited by spray pyrolysis. Sol. Energy Mater. 17, 99–117 (1988)

    Article  Google Scholar 

  21. Gamard, A.; Babot, O.; Jousseaume, B.; Rascle, M.C.; Toupance, T.; Campet, G.: Conductive F-doped tin dioxide sol–gel materials from fluorinated \(\beta \)-diketonate tin(IV) complexes. Charact. Thermolytic Behav. Chem. Mater. 12, 3419–3426 (2000)

    Google Scholar 

  22. He, J.H.; Wu, T.H.; Hsin, C.L.; Li, K.M.; Chen, L.J.; Chueh, Y.L.; Chou, L.J.; Wang, Z.L.: Beaklike \(\text{ SnO }_{2}\) nanorods with strong photoluminescent and field-emission properties. Small 2, 116 (2006)

    Article  Google Scholar 

  23. Sankaran, K.J.; Chen, H.C.; Panda, K.; Sundaravel, B.; Lee, C.Y.; Tai, N.H.; Lin, I.N.: Enhanced electron field emission properties of conducting ultrananocrystalline diamond films after Cu and Au ion implantation. ACS Appl. Mater. Interfaces 6, 4911–4919 (2014)

    Article  Google Scholar 

  24. Ray, S.C.; Ghosh, S.K.; Chiguvare, Z.; Palnitkar, U.; Pong, W.F.; Lin, I.N.; Papakonstantinou, P.; Strydom, A.M.: Electron field emission of silicon-doped diamond-like carbon thin films. Jpn. J. Appl. Phys. 49, 111301 (2010)

    Article  Google Scholar 

  25. Murphy, E.L.; Good Jr., R.H.: Thermionic emission, field emission, and the transition region. Phys. Rev. 102, 1464–1472 (1956)

    Article  Google Scholar 

  26. Forbes, R.G.; Edgcombe, C.J.; Valdrè, U.: Some comments on models for field enhancement. Ultramicroscopy 95, 50–65 (2003)

    Google Scholar 

  27. Rao, K.U.C.V.; Ishikawa, Y.; Weiner, B.R.; Morell, G.: Temporal field emission current stability and fluctuations from graphene films. Appl. Phys. Lett. 97, 062106 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The technical help on FE measurements from Dr. B.K. Min of YU is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Narayan Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A.N. Enhanced Field-Emission Properties of Sol–Gel-Derived Nanostructured \(\hbox {SnO}_{2}\):F Thin Film for Vacuum Microelectronics. Arab J Sci Eng 43, 3815–3821 (2018). https://doi.org/10.1007/s13369-017-2964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2964-6

Keywords

Navigation