Skip to main content
Log in

Analysis of Triazole Fungicides in Aqueous Solutions and Their Removal on Modified Activated Carbons

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Using liquid–liquid extraction and GC-MS/MS analysis, triazoles employed as fungicides in sawmills were studied in polycontaminated aqueous solutions. Their removal was estimated using activated carbon (AC) modified with NaOH as adsorbent. Granular and powder carbons exhibited similar results (abatement of 99.6 and 99.7% in mean, respectively for a dose of 3 g \(\hbox {L}^{-1}\) and a concentration of 1 mg \(\hbox {L}^{-1}\) for each fungicide in a mixture), suggesting that the capacities of these two adsorbents will be mainly due to their basic surface properties. Using a granular carbon dose of 1 g \(\hbox {L}^{-1}\) for the same concentrations in fungicides, a mean value of 95.3% was reached. Nevertheless, at lower doses, the adsorption capacities decreased (< 57%) and some differences appeared between triazoles. Use of AC to eliminate triazoles of leaching waters of wood-treated pieces permitted the retention of more than 80% of propiconazole for formulations without dye (only 37–55% with dye), which can induce some competition effects for organics to the active site access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh, H.; Rodriguez-Reinoso, F.: Applicability of activated carbon. In: Marsh, H., Rodriguez-Reinoso, F. (eds.) Activated Carbon, Chapter 8, pp. 383–453. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  2. Villacanas, F.; Pereira, M.F.R.; Orfao, J.J.M.; Figueiredo, J.L.: Adsorption of simple aromatic compounds on activated carbons. J. Colloid Int. Sci. 293, 128–136 (2006). https://doi.org/10.1016/j.jics.2005.06.032

    Article  Google Scholar 

  3. Al Mardini, F.; Legube, B.: Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 1. Equilibrium parameters. J. Hazard. Mat. 170, 744–753 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.003

    Article  Google Scholar 

  4. Barczak, M.; Dabrowski, A.: Adsorption of phenolic compounds on activated carbons. In: Crini, G., Badot, P.M. (eds.) Sorption Processes and Pollution, Chapter 4, pp. 113–129. Presses Universitaires de Franche-Comté, Besançon (2010)

    Google Scholar 

  5. Sing, K.S.W.: Adsorption by Active Carbons. Adsorption by Powders and Porous Solids, second edn, pp. 321–391. Academic Press, London (2014)

    Book  Google Scholar 

  6. Komarek, M.; Cadkova, E.; Chrastny, V.; Bordas, F.; Bollinger, J.C.: Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ. Int. 36, 138–151 (2010). https://doi.org/10.1016/j.envint.2009.10.005

    Article  Google Scholar 

  7. Gupta, P.K.: Aggarwal, M,: Toxicity of fungicides. In: Gupta, R.C. (ed.) Veterinary Toxicology: Basic and Clinical Principles, Chapter 55, pp 653–670. Academic Press, Amsterdam, The Netherlands (2012)

  8. Chen, Z.F.; Ying, G.G.: Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. Environ. Int. 84, 142–153 (2015). https://doi.org/10.1016/j.envint.2015.07.022

    Article  Google Scholar 

  9. Rocchi, S.; Reboux, G.; Millon, L.: Azole resistance with environmental origin: What alternatives for the future? J. Med. Mycol. 25, 249–256 (2015). https://doi.org/10.1016/j.mycmed.2015.10.00

    Article  Google Scholar 

  10. Sun, K.; Kang, M.; Ro, K.S.; Libra, J.A.; Zhao, Y.; Xing, B.: Variation in sorption of propiconazole with biochars: the effect of temperature, mineral, molecular structure, and nano-porosity. Chemosphere 142, 56–63 (2016). https://doi.org/10.1016/j.chemosphere.2015.07.018

    Article  Google Scholar 

  11. Adam, O.; Bitschené, M.; Torri, G.; Degiorgi, F.; Badot, P.M.; Crini, G.: Studies on adsorption of propiconazole on modified carbons. Sep. Purif. Technol. 46, 11–18 (2005). https://doi.org/10.1016/j.seppur.2005.03.012

    Article  Google Scholar 

  12. Bhuvaneswari, K.; Ravi, Prasad P.; Sarma, P.N.: Adsorption studies on wastewaters from cypermethrin manufacturing process using activated coconut shell carbon. J. Environ. Sci. Eng. Technol. 49, 265–272 (2007)

    Google Scholar 

  13. Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.J.; van der Lee, H.A.; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E.: Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 7, e31801 (2012). https://doi.org/10.1371/journal.pone.0031801

    Article  Google Scholar 

  14. Garcia Valcarel, A.I.; Tadeo, J.L.: Determination of azoles in sewage sludge from Spanish wastewater treatment plants by liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 34, 1228–1235 (2011). https://doi.org/10.1002/jssc.201000814

    Article  Google Scholar 

  15. Stavova, J.; Sedgeman, C.A.; Smith, Z.T.; Frink, L.A.; Hart, J.A.; Niri, V.H.; Kubatova, V.H.: Method development for the determination of wood preservatives in commercially treated wood using gas chromatography-mass spectrometry. Anal. Chim. Acta 702, 205–212 (2011). https://doi.org/10.1016/j.aca.2011.06.058

    Article  Google Scholar 

  16. Hernandez, F.; Portoles, T.; Ibanez, M.; Bustos-Lopez, M.C.; Diaz, R.; Botero-Coy, A.M.; Fuentes, C.L.; Penuela, G.: Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia. Sci. Total Environ. 439, 249–259 (2012). https://doi.org/10.1016/j.scitotenv.2012.09.036

    Article  Google Scholar 

  17. Carpinteiro, I.; Ramil, M.; Rodriguez, I.; Cela, R.: Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 1217, 7484–7492 (2010). https://doi.org/10.1016/j.chroma.2010.09.080

    Article  Google Scholar 

  18. Wang, K.; Wu, J.X.; Zhang, H.Y.: Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicol. Environ. Saf. 86, 111–115 (2012). https://doi.org/10.1016/j.ecoenv.2012.08.026

    Article  Google Scholar 

  19. Cerqueira, M.B.R.; Guilherme, J.R.; Caldas, S.S.; Martins, M.L.; Zanella, R.; Primel, E.G.: Evaluation of the QuEChERS method for the extraction of pharmaceuticals and personal care products from drinking-water treatment sludge with determination by UPLC-ESI-MS/MS. Chemosphere 107, 74–82 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.026

  20. Passeport, E.; Guenne, A.; Culhaoglu, T.; Moreau, S.; Bouyé, J.M.; Tournebize, J.: Design of experiments and details uncertainty analysis to develop and validate a solid-phase microextraction/gas chromatography-mass spectrometry method for the simultaneous analysis of 16 pesticides in water. J. Chromatogr. A 1217, 5317–5327 (2010). https://doi.org/10.1016/j.chroma.2010.06.042

    Article  Google Scholar 

  21. Van De Steene, J.C.; Lambert, W.E.: Validation of a solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometric method for the determination of nine basic pharmaceuticals in wastewater and surface water samples. J. Chromatogr. A 1182, 153–160 (2008). https://doi.org/10.1016/j.chroma.2008.01.012

    Article  Google Scholar 

  22. Montes, R.; Rodriguez, I.; Ramil, M.; Rubi, E.; Cela, R.: Solid-phase extraction by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine. J. Chromatogr. A 1216, 5459–5466 (2009). https://doi.org/10.1016/j.chroma.2009.05.048

    Article  Google Scholar 

  23. Cooney, D.O.: Production and properties of activated carbons. In: Cooney, D.O. (ed.) Sorption Design for Wastewater Treatment. CRC Press, Boca Raton (1998)

    Google Scholar 

  24. Dabrowski, A.: Adsorption: from theory to practice. Adv. Colloid Int. Sci. 93, 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  25. Ahmaruzzaman, Md: Adsorption of phenolic compounds on low-cost adsorbents. A review. Adv. Colloid Int. Sci. 143, 48–67 (2008). https://doi.org/10.1016/j.cis.2008.07.002

    Article  Google Scholar 

  26. Crini, G.: Waste water treatment by sorption. In: Crini, G., Badot, P.M. (eds.) Sorption Processes and Pollution, chapter 2, pp. 39–73. Presses Universitaires de Franche-Comté, Besançon (2010)

    Google Scholar 

  27. Radovic, L.R.; Moreno-Castilla, C.; Rivera-Utrilla, J.: Carbon material as sorbents in aqueous solutions. In: Radovic, L.R. (ed.) Chemistry and Physics of Carbon. Marcel Dekker, New York (2000)

    Google Scholar 

  28. Pereira, M.F.R.; Soares, S.F.; Orfao, J.J.M.; Figueiredo, J.L.: Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon 41, 811–821 (2003). https://doi.org/10.1016/S0008-6223(02)00406-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Morin-Crini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin-Crini, N., Rocchi, S., Jeanvoine, A. et al. Analysis of Triazole Fungicides in Aqueous Solutions and Their Removal on Modified Activated Carbons. Arab J Sci Eng 43, 3493–3501 (2018). https://doi.org/10.1007/s13369-017-2913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2913-4

Keywords

Navigation