Skip to main content
Log in

Hydrophobic Bacteria-Repellant Graphene Coatings from Recycled Pencil Stubs

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene has exhaustive features and accomplishments behind its name; recently, the bacteria-repellant activity of graphene is beginning to surface. In the current study, we have demonstrated the preparation of hydrophobic coatings of graphene on hydrophilic glass surfaces. Using recycled pencil stubs as the source material combined with a sonication exfoliation methodology, successful graphene coatings on glass were obtained. The bacteria-repellant property of the coating was validated against four different biofilm-forming pathogenic bacteria. The graphene coatings were observed to be hydrophobic in nature and able to repel bacterial adhesion. The coating can be obtained on any substrate of choice and hence would prove to be of unequivocal importance as an antifouling coating on industrial piping’s and medical equipments and implant materials that are prone to bacterial fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azis, P.K.A.; Al-Tisan, I.; Sasikumar, N.: Biofouling potential and environmental factors of seawater at the desalination plant intake. Desalination 135, 69–82 (2001)

    Article  Google Scholar 

  2. Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R.: The impact and control of biofouling in marine aquaculture: a review. Biofouling 28, 649–669 (2012)

    Article  Google Scholar 

  3. Tuson, H.H.; Weibel, D.B.: Bacteria–surface interactions. Soft Matter 9, 4368–4380 (2013)

    Article  Google Scholar 

  4. Braem, L.; Van Mellaert, T.; Mattheys, D.; Hofmans, E.; De Waelheyns, L.; Geris, J.; Anné, J.; Schrooten, J., Vleugels, J.: Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J. Biomed. Mater. Res A. (2013). https://doi.org/10.1002/jbm.a.34688

  5. Kadurugamuwa, J.L.; L. Sin, E.; Albert, J.; Yu, K.; Francis, M.; DeBoer, M.; Rubin, C.; Bellinger-Kawahara, T.R.; Parr Jr., Jr; Contag, P.R.: Direct continuous method for monitoring biofilm infection in a mouse model. Infect. Immun. 71, 882–890 (2003)

    Article  Google Scholar 

  6. Kadurugamuwa, J.L.; Sin, L.V.; Yu, J.; Francis, K.P.; Kimura, R.; Purchio, T.; Contag, P.R.: Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrob. Agents Chemother. 47, 3130–3137 (2003)

    Article  Google Scholar 

  7. Szewczyk, P.: The role of nanotechnology in improving marine antifouling coatings. Zesz Nauk/Akad Morska Szczecinie 24, 118–23 (2010)

    Google Scholar 

  8. Callow, J.A.; Callow, M.E.: Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2, 1–10 (2011)

    Article  Google Scholar 

  9. Banerjee, I.; Pangule, R.C.; Kane, R.S.: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011)

    Article  Google Scholar 

  10. Carolina, P.; Fernando, D.; Edra, J.; Ricardo, H.; Cristian, R.; Rodrigo, R.; Patricio, V.: A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material. J. Nanobiotechnol. 13, 82 (2015). https://doi.org/10.1186/s12951-015-0137-x

    Article  Google Scholar 

  11. Sheet, I.; Holail, H.; Olama, Z.; Kabbani, A.; Hines, M.: The antibacterial activity of graphite oxide, silver, impregnated graphite oxide with silver and GO-coated sand nanoparticles against waterborne pathogenic E. coli BL21. Int. J. Curr. Microbiol. Appl. Sci. 2, 1–11 (2013)

    Google Scholar 

  12. Sola, A.; Bellucci, D.; Cannillo, V.; Cattini, A.: Bioactive glass coatings: a review. Surf. Eng. 27(8), 560–572 (2011)

    Article  Google Scholar 

  13. Stenson, C.; McDonnell, K. A.; Yin, S.; Aldwell, B.; Meyer, M.; Dowling, D.P.; Lupoi, R.: Cold spray deposition to prevent fouling of polymer surfaces. Surf. Eng. (2016). https://doi.org/10.1080/02670844.2016.1229833

  14. Guo, Y.B.; Yang, L.; Wang, D.G.: Preparation and hydrophobic behaviours of polystyrene composite coating. Surf. Eng. 32(2), 95–101 (2016). https://doi.org/10.1179/1743294415Y.0000000016

    Article  Google Scholar 

  15. Wang, R.G.; Kaneko, J.: Hydrophobicity and corrosion resistance of steels coated with PFDS film. Surf. Eng. 29(4), 255–263 (2013). https://doi.org/10.1179/1743294412Y.0000000101

    Article  Google Scholar 

  16. Viechineski, F.N.; Kubaski, E.T.; Schmidt, S.; Sequinel, T.; Varela, J.A.; Tebcherani, S.M.: Preparation of transparent hydrophobic polymeric films spray-deposited on substrates. Surf. Eng. (2016). https://doi.org/10.1080/02670844.2016.1209623

  17. Congdon, R.B.; Feldberg, A.S.; Ben-Yakar, N.; McGee, D.; Ober, C.; Sammakia, B.; Sadik, O.A.: Early detection of Candida albicans biofilms at porous electrodes. Anal. Biochem. 433, 192–201 (2013)

    Article  Google Scholar 

  18. Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  19. Ghazaleh, A.; Siti Masrinda, T.; Payam, A.: Synthesis of graphene through direct decomposition of CO\(_2\) with the aid of Ni–Ce–Fe trimetallic catalyst. Bull. Mater. Sci. 39(1), 235–240 (2016)

    Article  Google Scholar 

  20. Eda, G.; Fanchini, G.; Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  21. Li, X.; Ca, i W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 5932 (2009)

    Google Scholar 

  22. Allaedini, G.; Mahmoudi, E.; Aminayi, P.; Tasirin, S.M.; Mohammad, A.W.: Optical investigation of reduced graphene oxide and reduced graphene oxide/CNTs grown via simple CVD method. Synth. Met. 220, 72–77 (2016)

    Article  Google Scholar 

  23. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  24. Rao, C.N.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl. 48, 7752–7777 (2009)

    Article  Google Scholar 

  25. Akhavan, O.; Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–6 (2010)

    Article  Google Scholar 

  26. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C.: Graphene-based antibacterial paper. ACS Nano 4, 4317–23 (2010)

  27. Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.H.; Yun, K.; Kim, S.J.: Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116, 17280–17287 (2012)

    Article  Google Scholar 

  28. Gopal, J.; Hasan, N.; Wu, H.F.: Fabrication of titanium based MALDI bacterial chips for rapid, sensitive and direct analysis of pathogenic bacteria. Biosens. Bioelectron. 39, 57–63 (2013)

    Article  Google Scholar 

  29. Abdelhamid, H.N.; Wu, H.F.: A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal. Chim. Acta 751, 94–104 (2012)

    Article  Google Scholar 

  30. Kirkland, N.T.; Schiller, T.; Medhekar, N.; Birbilis, N.: Exploring graphene as a corrosion protection barrier Corros. Science 56, 1–4 (2012)

    Google Scholar 

  31. Perrault, F.; de Faria, A.F.; Nejati, S.; Elimelech, M.: Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015)

    Article  Google Scholar 

  32. Perreault, F.; de Faria, F.A.; Elimelech, M.: Environmental applications of graphene-based nanomaterial. Chem. Soc. Rev. 44, 5861–96 (2015)

    Article  Google Scholar 

  33. Perreault, F.; Tousley, M.E.; Elimelech, M.: Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1, 71–6 (2014)

  34. Romero-Vargas, Cartrillón S.; Perrault, F.; de Faria, F.A.; Elimelech, M.: Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ. Sci. Technol. Lett. 2, 112–117 (2015)

    Article  Google Scholar 

  35. Al-Thani, R.F.; Patan, N.K.; Al-Maadeed, M.A.: Graphene oxide as antimicrobial against two gram-positive and two gram-negative bacteria in addition to one fungus. Online J. Biol. Sci. 14, 230–9 (2014)

    Article  Google Scholar 

  36. Woltornist, S.J.; Oyer, A.J.; Carrillo, J.-M.Y.; Dobrynin, A.V.; Adamson, D.H.: Conductive thin films of pristine graphene by solvent interface trapping. ACS Nano 7(8), 7062–7066 (2013)

    Article  Google Scholar 

  37. Gopal, J.; Tata, B.V.R.; George, R.P.; Muraleedharan, P.; Dayal, R.K.: Biofouling control of titanium by microroughness reduction. Surf. Eng. 24(6), 447–451 (2008)

    Article  Google Scholar 

  38. Muraleedharan, P.; Gopal, J.; George, R.P.; Khatak, H.S.: Photocatalytic bactericidal property of an anodized Ti6Al4V alloy. Curr. Sci. 84(2), 1–3 (2003)

    Google Scholar 

  39. El Rouby, Waleed M.A.: Crumpled graphene: preparation and applications. RSC Adv. 5, 66767 (2015)

    Article  Google Scholar 

  40. Thema, F.T.; Moloto, M.J.; Dikio, E.D., et al.,: Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J. Chem. Article ID 150536 (2013). https://doi.org/10.1155/2013/150536

  41. Parra, C.; Montero-Silva, F.; Henríquez, R.; Flores, M.; Garín, C.; Ramírez, C.; et al.: Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings. ACS Appl. Mater. Interfaces 7, 6430–6437 (2015)

    Article  Google Scholar 

  42. Ajay, K.; Venkataramana, G.; Rahul, M.; Bharath, N.; Osman, E.; Shojaee, S.Ali; Lucca, Don A.; Wencai, R.; Hui-Ming, C.; Nikhil, K.: Superiority of graphene over polymer coatings for prevention of microbially induced corrosion. Sci. Rep. 5, 13858. https://doi.org/10.1038/srep13858

  43. Yuan, Y.; Lee, T.R.: Contact angle and wetting properties. Surf. Sci. Tech. (2013). https://doi.org/10.1007/978-3-642-34243-1

  44. Lafuma, D.Quere: Superhydrophobic states. Nat. Mater. 2, 457 (2003)

    Article  Google Scholar 

  45. Bos, R.; Van der Mei, H.C.; Busscher, H.J.: Physico-chemistry of initial microbial adhesive interaction—its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230 (1999)

    Article  Google Scholar 

  46. Chapman, J.; Sullivan, T.; Regan, F.: Nanoparticles in Anti-microbial Materials: Use and Characterization, pp. 40–48. The Royal Society of Chemistry, Cambridge (2012)

    Google Scholar 

  47. Yu, H.B.; Li, R.F.: Preparation and properties of biomimetic superhydrophobic composite coating. Surf. Eng. 32(2), 79–84 (2016)

    Article  Google Scholar 

  48. Prasai, D.; Tuberquia, J.C.; Harl, R.R.; Jennings, G.K.; Rogers, B.R.; Bolotin, K.I.; et al.: Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012)

    Article  Google Scholar 

  49. Jianchen, H.; Yanfeng, J.; Yuanyuan, S.; Hui, F.; Duan, H.; Mario, L.: A review on the use of graphene as a protective coating against corrosion. Ann. J. Mater. Sci. Eng. 1(3), 1–16 (2014)

    Google Scholar 

  50. Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; et al.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Kyung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, M., Gopal, J., Chun, S. et al. Hydrophobic Bacteria-Repellant Graphene Coatings from Recycled Pencil Stubs. Arab J Sci Eng 43, 241–249 (2018). https://doi.org/10.1007/s13369-017-2901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2901-8

Keywords

Navigation