Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 6, pp 2833–2842 | Cite as

Second-Order Statistics Channel Model for 5G Millimeter-Wave Mobile Communications

  • Basim Mohammed Eldowek
  • Saied M. Abd El-attyEmail author
  • El-Sayed M. El-Rabaie
  • Fathi E. Abd El-Samie
Research Article - Electrical Engineering

Abstract

Millimeter waves (mmWs) are considered as one of the most promising technologies for future 5G networks. The current study presents a three-dimensional (3D) geometry-based channel model for a fixed-to-mobile non-isotropic Ricean mmW scattering environment. According to this 3D reference model, the mmW complex faded envelope impulse response has been derived. This impulse response has been employed in estimating the second-order statistics of the mmW channel model. These statistics comprise both the 3D faded envelope level crossing rate (LCR) and the average fade duration (AFD). As a consequence, these statistics may contribute to the 5G network planning and engineering, especially for studying the phenomenon of fading with time, the 5G system characteristics, the handoff scenarios, and the relationship between the mobile user velocity and the fading rate. Furthermore, this study also provides a stochastic sum-of-sinusoids mmW channel simulator for comparison with analytical results. Numerical results validated the proposed analytical model and revealed the effect of channel parameters on both LCR and AFD in the mmW bands.

Keywords

Millimeter wave bands 3D statistical channel model, Multipath fading Second-order statistics 5G mobile communications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rappaport, T.S.; et al.: Millimeter Wave Wireless Communications. Pearson/Prentice Hall, Upper Saddle River (2015)Google Scholar
  2. 2.
    Rappaport, T.S.; et al.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1(1), 335–349 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Azar, Y.; et al.: 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In: 2013 IEEE International Conference on Communications (ICC), Budapest, pp. 5143–5147 (2013)Google Scholar
  4. 4.
    MacCartney, G.R.; Rappaport, T.S.: 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In: IEEE International Conference on Communications (ICC), pp. 4862–4867 (2014)Google Scholar
  5. 5.
    MacCartney, G.R.; Samimi, M.K.; Rappaport, T.S.: Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington DC, pp. 227–231 (2014)Google Scholar
  6. 6.
    Rappaport, T.S.; Murdock, J.N.; Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1386–1389 (2011)CrossRefGoogle Scholar
  7. 7.
    Samimi, M.K.; Rappaport, T.S.: Ultra-wideband statistical channel model for 28 GHz millimeter-wave urban NLOS environments. In: Proceedings of IEEE GlobeCom, pp. 3483–3489 (2014)Google Scholar
  8. 8.
    Samimi, M.K.; Rappaport, T.S.: 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Trans. Microw. Theory Tech. 64(7), 2207–2225 (2016)Google Scholar
  9. 9.
    3GPP TR 36.873, v1.3.0 Study on 3D channel model for LTE (Release 12). February, 2014. (Available at www.3gpp.org)
  10. 10.
    Va, V.; Heath Jr., R.W.: Basic relationship between channel coherence time and beam width in vehicular channels. In: Proceedings of IEEE VTC fall, pp. 3483–3489 (2015)Google Scholar
  11. 11.
    Va V.; Choi, J.; Heath Jr., R.W.: Channel variation in vehicular channels and its implications. arXiv:1511.02937v1 [cs.IT], 9 (2015)
  12. 12.
    El-atty, S.M.A.; Gharsseldien, Z.M.: Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Netw. 23(4), 1169–1190 (2017)Google Scholar
  13. 13.
    Aulin, T.: A modified model for the fading at a mobile radio channel. IEEE Trans. Veh. Technol. 28(3), 182–203 (1979)CrossRefGoogle Scholar
  14. 14.
    Turkmani, A.M.D.; Parsons, J.D.: Characterization of mobile radio signals: model description. IEE Proc. I 138(6), 557–565 (1991)Google Scholar
  15. 15.
    Leong, S.-Y.; Zheng, Y.R.; Xiao, C.: Space-time fading correlation functions of a 3-D MIMO channel model. Proc. IEEE WCNC Atlanta 2, 1127–1132 (2004)Google Scholar
  16. 16.
    Stüber, G.L.: Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Trans. Veh. Technol. 57(4), 2042–2054 (2008)CrossRefGoogle Scholar
  17. 17.
    Zajic, A.G.; Stüber, G.L.; Pratt, T.G.; Nguyen, S.: Envelope level crossing rate and average fade duration in mobile-to-mobile fading channels. In: Proceedings of IEEE ICC, pp. 4446–4450 (2008)Google Scholar
  18. 18.
    Eldowek, B.M.; et al.: Complex envelope second-order statistics in high-altitude platforms communication channels. Wirel. Pers. Commun. 77(4), 2517–2535 (2014)CrossRefGoogle Scholar
  19. 19.
    Stuber, G.L.: Principle of Mobile Communication, 2nd edn. Kluwer, Boston (2001)zbMATHGoogle Scholar
  20. 20.
    Patzold, M.: Mobile Radio Channels, 2nd edn. Wiley, New York (2012)Google Scholar
  21. 21.
    Rangan, S.; Rappaport, T.S.; Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)CrossRefGoogle Scholar
  22. 22.
    Michailidis, E.T.; Kanatas, A.G.: Three-dimensional HAP-MIMO channels: modeling and analysis of space–time correlation. IEEE Trans. Veh. Technol. 59(5), 2232–2242 (2010)CrossRefGoogle Scholar
  23. 23.
    Zajić, A.: Mobile-to-Mobile Wireless Channels. Artech House, Norwood (2013)Google Scholar
  24. 24.
    Pätzold, M.; Killat, U.; Laue, F.: An extended Suzuki model for land mobile satellite channels and its statistical properties. IEEE Trans. Veh. Technol. 47(2), 617–630 (1998)CrossRefGoogle Scholar
  25. 25.
    Jakes, W.C.: Microwave Mobile Communications, 2nd edn. Wiley-IEEE Press, Piscataway (1994)CrossRefGoogle Scholar
  26. 26.
    Abdi, A.; Barger, J.A.; Kaveh, M.: A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Trans. Veh. Technol. 51(3), 425–434 (2002)CrossRefGoogle Scholar
  27. 27.
    Yamada, Y.; Ebine, Y.; Nakajima, N.: Base station/vehicular antenna design techniques employed in high capacity land mobile communications system. Rev. Electr. Commun. Lab. NTT 35, 115–121 (1987)Google Scholar
  28. 28.
    Gradshteyn, I.S.; Ryzhik, I.M.: Special Functions, Chap. 8. In: Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Product, 6th edn. Academic, San Diego (1994)Google Scholar
  29. 29.
    Mardia, K.V.; Jupp, P.E.: Directional Statistics. Wiley, New York (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    Samimi, M.K.; et al.: 28 GHz Millimeter-wave ultra-wideband small-scale fading models in wireless channels, pp. 1–6. In: Proceedings of IEEE VTC, Spring (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations