Skip to main content
Log in

On the Kernel Optimization of Radial Basis Function Using Nelder Mead Simplex

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Artificial neural networks in general and radial basis function in particular are known for high accuracies in function approximation, nonlinear system identification, and pattern classification problems; however, they pose numerous challenges with regards to the optimality of parameters involved. This paper proposes the use of a classical Nelder–Mead simplex method to optimize the parameters of activation function implicit in the design of radial basis function network. The key advantage of using Nelder–Mead simplex method lies in the fact that it provides a simple yet effective derivative-free approach for the numerical optimization of scalar variables such as spread and learning rate for Kernels of the radial basis function network. We thus present a novel hybrid algorithm in which weights of neurons are updated using gradient decent approach, while spread and learning rate is updated, viz. the Nelder–Mead simplex method. In results, the efficiency of proposed algorithm is statistically compared with the existing algorithms in different applications such as classification of digital signals in noise-limited wireless communication system, synthesis of microstrip patch antenna, and curve fitting problem. Lastly, we consider a two-variable function approximation problem to pedagogically express contrasting features of the hybrid algorithm, thereby pointing toward its potential usage in some engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    Article  Google Scholar 

  2. Leung, H.; Lo, T.; Wang, S.: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Netw. 12(5), 1163–1172 (2001)

    Article  Google Scholar 

  3. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1994)

    MATH  Google Scholar 

  4. Broomhead, D.S.; Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Wettschereck, D.; Dietterich, T.: Improving the performance of radial basis function networks by learning center locations. In: NIPS, vol. 4, pp. 1133–1140 (1991)

  6. Karayiannis, N.B.; Randolph-Gips, M.M.: On the construction and training of reformulated radial basis function neural networks. IEEE Trans. Neural Netw. 14(4), 835–846 (2003)

    Article  MATH  Google Scholar 

  7. Park, J.; Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  8. Yu, H.; Xie, T.; Paszczynski, S.; Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Ind. Electron. 58(12), 5438–5450 (2011)

    Article  Google Scholar 

  9. Wild, S.M.; Regis, R.G.; Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nelder, J.A.; Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Runarsson, T.P.; Yao, X.: Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. 35, 233–243 (2005)

    Article  Google Scholar 

  12. Fan, S.K.; Zahara, E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, F.; Han, L.: Implementing the Nelder–Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51(1), 259–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rios, L.M.; Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reiner, P.; Wilamowski, B. M.: Nelder–Mead enhanced extreme learning machine. In: 17th IEEE Intelligent Engineering Systems Conference, Costa Rica, pp. 225-230 (2013)

  16. Reiner, P.; Wilamowski, B.M.: Efficient incremental construction of RBF networks using quasi-gradient method. Neurocomputing 150, 349–356 (2015)

    Article  Google Scholar 

  17. Wu, X.; Wilamowski, B.M.: A greedy incremental algorithm for universal approximation with RBF networks. In: Advances in Soft Computing, Intelligent Robotics and Control, pp. 145-157. Springer, Berlin (2014)

  18. Akhtar, M.T.; Abe, M.; Kawamata, M.: A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems. IEEE Trans. Audio Speech Lang. Process. 14(2), 720–726 (2006)

    Article  Google Scholar 

  19. Ali, S.S.A.; Moinuddin, M.; Raza, K.; Adil, S.H.: An adaptive learning rate for RBFNN using time-domain feedback analysis. Sci. World J. 2014, 850189. doi:10.1155/2014/850189 (2014)

  20. Spendley, W.; Hext, G.R.; Himsworth, F.R.: Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4(4), 441–461 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baudin, M.: Nelder–Mead user’s manual. Consortium Scilab - Digiteo (2010)

  22. Wright, M.H.: Nelder, Mead, and the other simplex method. Doc. Math. 7, 271–276 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Zahara, E.; Kao, Y.T.: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009)

    Article  Google Scholar 

  24. Huang, G.B.; Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18), 3460–3468 (2008)

    Article  Google Scholar 

  25. Kohonen, T.: Self-Organizing Maps, p. 30. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  26. Kim, D.W.; Lee, K.; Lee, D.; Lee, K.H.: A kernel-based subtractive clustering method. Pattern Recognit. Lett. 26(7), 879–891 (2005)

    Article  Google Scholar 

  27. Kolda, T.G.; Lewis, R.M.; Torczon, V.J.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Su, W.; Xu, J.L.; Zhou, M.: Real-time modulation classification based on maximum likelihood. IEEE Commun. Lett. 12(11), 801–803 (2008)

    Article  Google Scholar 

  29. Yang, Y.; Chang, J.N.; Liu, J.C.; Liu, C.H.: Maximum log-likelihood function-based QAM signal classification over fading channels. Wirel. Pers. Commun. 28(1), 77–94 (2004)

    Article  Google Scholar 

  30. Yang, Y.; Soliman, S.S.: An improved moment-based algorithm for signal classification. Signal Process. 43(3), 231–244 (1995)

    Article  Google Scholar 

  31. Wu, H.C.; Saquib, M.; Yun, Z.: Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Trans. Wirel. Commun. 7(8), 3098–3105 (2008)

    Article  Google Scholar 

  32. Aftab, W.; Moinuddin, M.; Shaikh, M.S.: A novel kernel for rbf based neural networks. In: Abstract and Applied Analysis (2014)

  33. Türker, N.; Güneş, F.; Yildirim, T.: Artificial neural design of microstrip antennas. Turk. J. Electr. Eng. Comput. Sci. 14(3), 445–453 (2007)

  34. Hassan, A.K.; Affandi, A.: On Modelling and comparative study of LMS and RLS algorithms for synthesis of MSA. Modelling Simul. Eng. 2016, 9742483. doi:10.1155/2016/9742483 (2016)

  35. Edwards, C.; Steer, M.B.: Foundations of Interconnect and Microstrip Design. Wiley. ISBN 0-471-60701-0 (2000)

  36. Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, Hoboken. ISBN 047166782X (2005)

  37. Passino, K.M.: Biomimicry for Optimization, Control, and Automation. Springer, London (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Moinuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.K., Moinuddin, M., Al-Saggaf, U.M. et al. On the Kernel Optimization of Radial Basis Function Using Nelder Mead Simplex. Arab J Sci Eng 43, 2805–2816 (2018). https://doi.org/10.1007/s13369-017-2888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2888-1

Keywords

Navigation