Peltophorum pterocarpum Flower-Mediated Synthesis, Characterization, Antimicrobial and Cytotoxic Activities of ZnO Nanoparticles

Abstract

In the present investigation, zinc oxide nanoparticles (ZnONPs) were synthesized using Peltophorum pterocarpum flower extract and evaluated its antimicrobial and cytotoxic activity. The synthesis of ZnONPs using plant extracts is becoming popular as it is eco-friendly, safe, simple and non-toxic method. Characterization was done by various spectral analyses. UV–visible spectrum showed maximum peak at 380 nm, and crystalline nature was of nanoparticles confirmed by XRD analysis. The average size of nanoparticles was 69.45 nm. The antimicrobial activity was evaluated by agar well diffusion method against pathogenic microorganisms. ZnONPs showed broad spectrum of antimicrobial activity against pathogenic microorganisms. Cytotoxic activity was evaluated by MTT assay against HeLa cancer cell lines. They showed 50% cell viability at \(10~\upmu \hbox {g}/\hbox {ml}\). The results suggested that synthesized ZnONPs have potential application in various field of medical for treatment of disease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.Y.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)

    Article  Google Scholar 

  2. 2.

    Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M.: Antimicrobial properties of a novel Silver–Silica nanocomposite material. Appl. Environ. Microbiol. 75, 2973–2976 (2009)

    Article  Google Scholar 

  3. 3.

    Sakamoto, J.H.; Van de Ven, A.L.; Godin, B.; Blanco, E.; Serda, R.E.; Grattoni, A.; Ziemys, A.; Bouamrani, A.; Hu, T.; Ranganathan, S.I.; De Rosa, E.; Martinez, J.O.; Smid, C.A.; Buchanan, R.M.; Lee, S.Y.; Srinivasan, S.; Landry, M.; Meyn, A.; Tasciotti, E.; Liu, X.; Decuzzi, P.; Ferrari, M.: Enabling individualized therapy through nanotechnology. Pharmacol. Res. 62, 57–89 (2010)

    Article  Google Scholar 

  4. 4.

    Singh, R.P.; Shukla, V.K.; Yadav, R.S.; Sharma, P.K.; Singh, P.K.; Pandey, A.C.: Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2, 313–317 (2011)

    Article  Google Scholar 

  5. 5.

    Anbukkarasi, V.; Srinivasan, R.; Elangovan, N.: Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int. J. Pharm. Sci. Rev. Res. 33, 110–115 (2015)

    Google Scholar 

  6. 6.

    Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.A.; Michailidis, N.: Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett. 76, 18–20 (2012)

    Article  Google Scholar 

  7. 7.

    Sivakumar, P.; Devi, C.N.; Renganathan, S.: Synthesis of silver nanoparticles using Lantana camara fruit extract and its effect on pathogens. Asian J. Pharm. Clin. Res. 5, 97–101 (2012)

    Google Scholar 

  8. 8.

    Chanda, S.: Silver nanoparticles (medicinal plants mediated): a new generation of antimicrobials to combat microbial pathogens—a review. In: Mendez-Vilas, A. (eds) Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, FORMATEX (2013)

  9. 9.

    Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Aceituno, V.C.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C.: Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomed. 11, 3691–3701 (2016)

    Article  Google Scholar 

  10. 10.

    Brown, K.: Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin. Drug. Saf. 1, 253–267 (2002)

    Article  Google Scholar 

  11. 11.

    Wang, R.; Xin, J.H.; Tao, X.M.; Daoud, W.A.: ZnO nanorods grown on cotton fabrics at low temperature. Chem. Phys. Lett. 398, 250–255 (2004)

    Article  Google Scholar 

  12. 12.

    Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G.: Zinc oxide nanoparticles for selective destruction of tumour cells and potential for drug delivery applications. Expert. Opin. Drug. Deliv. 7, 1063–1077 (2010)

    Article  Google Scholar 

  13. 13.

    Atmaca, S.; Gul, K.; Cicek, R.: The effect of zinc on microbial growth. Turk. J. Med. Sci. 28, 595–597 (1998)

    Google Scholar 

  14. 14.

    Sethuraman, M.G.; Sulochana, N.; Kameswaran, L.: Anti-inflammatory and antibacterial activity of Peltophorum pterocarpum flowers. Fitoterapia. 55, 177–179 (1984)

    Google Scholar 

  15. 15.

    Sukumaran, S.; Kiruba, S.; Mahesh, M.; Nisha, S.R.; Miller, P.Z.; Ben, C.P.; Jeeva, S.: Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pac. J. Trop. Med. 4, 735–738 (2011)

    Article  Google Scholar 

  16. 16.

    Perez, C.; Paul, M.; Bazerque, P.: An antibiotic assay by the agar well diffusion method. Acta Biol. Med. Exp. 15, 113–115 (1990)

    Google Scholar 

  17. 17.

    Kaneria, M.; Baravalia, Y.; Vaghasiya, Y.; Chanda, S.: Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra region, India. Indian J. Pharm. Sci. 71, 406–412 (2009)

    Article  Google Scholar 

  18. 18.

    Rakholiya, K.; Chanda, S.: In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains. Asian Pac. J. Trop. Biomed. 2, 876–880 (2012)

    Article  Google Scholar 

  19. 19.

    Labieniec, M.; Gabryelak, T.: Effects of tannins on Chinese hamster cell line B14. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 539, 127–135 (2003)

    Article  Google Scholar 

  20. 20.

    Kitture, R.; Chordiya, K.; Gaware, S.; Ghosh, S.; More, P.A.; Kulkarni, P.; Chopade, B.A.; Kale, S.N.: ZnO nanoparticles red sandalwood conjugate: a promising anti-diabetic agent. J. Nanosci. Nanotech. 15, 4046–4051 (2015)

    Article  Google Scholar 

  21. 21.

    Akash, S.; Kumar, S.S.; Dhamodhar, P.: Inhibition of group a streptococcus by green synthesized zinc oxide nanoparticles. Int. J. Pharma Bio Sci. 6, 85–98 (2015)

    Google Scholar 

  22. 22.

    Prabhu, Y.T.; Kumari, B.S.; Rao, K.V.; Kavitha, V.; Padmavathi, D.A.: Surfactant assisted synthesis of ZnO nanoparticles, characterization and its antimicrobial activity against Staphylococcus aureus and Escherichia coli. Int. J. Curr. Eng. Technol. 4, 1038–1041 (2014)

    Google Scholar 

  23. 23.

    Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.: Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 886–891 (2015)

    Article  Google Scholar 

  24. 24.

    Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H.: Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis rhizoma. Bioorg. Med. Chem. Lett. 24, 4298–4303 (2014)

    Article  Google Scholar 

  25. 25.

    Janaki, A.C.; Sailatha, E.; Gunasekaran, S.: Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. Specttrosc. 144, 17–22 (2015)

    Article  Google Scholar 

  26. 26.

    Elumalai, K.; Velmurugan, S.: Green synthesis, characterization and antimicrobial activities of zincoxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336 (2015)

    Article  Google Scholar 

  27. 27.

    Mishra, V.; Sharma, R.: Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int. J. Pharm. Res. Health Sci. 3, 694–699 (2015)

    Google Scholar 

  28. 28.

    Madan, H.R.; Sharma, S.C.; Udayabhanu; Suresh, D.; Vidya, Y.S.; Nagabhushana, H.; Rajanaik, H.; Anantharaju, K.S.; Prashantha, S.C.; Maiya, P.S.: Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc 152, 404–416 (2016)

  29. 29.

    Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S.: Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 160, 32–42 (2016)

    Article  Google Scholar 

  30. 30.

    Gondal, M.A.; Alzahrani, A.J.; Randhawa, M.A.; Siddiqui, M.N.: Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. J. Environ. Sci. Health A 47, 1413–1418 (2012)

    Article  Google Scholar 

  31. 31.

    Yamamoto, O.: Influence of particle size on the antimicrobial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001)

    Article  Google Scholar 

  32. 32.

    Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Therapeut. 83, 761–769 (2008)

    Article  Google Scholar 

  33. 33.

    Raghupathi, K.R.; Koodali, R.T.; Manna, A.C.: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of Zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011)

    Article  Google Scholar 

  34. 34.

    Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T.: Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. https://doi.org/10.1186/1477-3155-9-43 (2011)

  35. 35.

    Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S.: Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process. Biochem. 42, 273–279 (2012)

  36. 36.

    Padalia, H.; Chanda, S.: Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artif. Cells Nanomed. Biotechnol. https://doi.org/10.1080/21691401.2017.1282868 (2017)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumitra Chanda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khara, G., Padalia, H., Moteriya, P. et al. Peltophorum pterocarpum Flower-Mediated Synthesis, Characterization, Antimicrobial and Cytotoxic Activities of ZnO Nanoparticles. Arab J Sci Eng 43, 3393–3401 (2018). https://doi.org/10.1007/s13369-017-2875-6

Download citation

Keywords

  • Green synthesis
  • Peltophorum pterocarpum
  • Zinc oxide nanoparticles
  • Antimicrobial activity
  • Cytotoxic activity