Skip to main content
Log in

Impact of \(\hbox {TiO}_{2}\)–Cation Exchange Resin Composite on the Removal of Ethyl Violet

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Adsorption capacity and photocatalytic performance of a mixture of \(\hbox {TiO}_{2}\) and a cation exchange resin were assessed by measuring the removal of the cationic dye ethyl violet (EV) from water. Highest adsorption of EV was achieved at pH 3 due to the increase in number of positive charges of the EV molecule. However, adsorption decreased at higher pH. The adsorption kinetics at pH 3 could be accurately described by means of a pseudo-second order kinetic model. Experimental adsorption equilibrium data at pH 3 fitted the Langmuir model more accurately than the Sips and Freundlich models. Photocatalysis experiments indicated that the EV elimination was higher with the mixture of cation exchange resin and \(\hbox {TiO}_{2}\) than with pure \(\hbox {TiO}_{2}\). The description of experimental photocatalysis data by means of the Langmuir–Hinshelwood model was improved by introducing a power parameter in the original model. From the modified Langmuir–Hinshelwood model, it could be derived that the addition of increasing resin concentrations to a constant \(\hbox {TiO}_{2}\) concentration enhanced the photocatalytic rate constant; however, UV light penetration in the solution was impeded beyond a given resin amount. Pseudo-first-order kinetics showed poor fit of experimental photocatalysis data except for low EV concentration (\(< 35\) mg/L) at high resin dosage. A synergistic effect between adsorption and photocatalysis was seen upon combining the \(\hbox {TiO}_{2}\). This composite was more efficient for the removal of the dye than the use of \(\hbox {TiO}_{2}\) alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V.V.: Production, characterization and treatment of textile effluents: a critical review. Chem. Eng. Process Technol. 5(182). doi:10.4172/2157-7048.1000182 (2014)

  2. Dominguez, J.R.; Beltran, J.; Rodriguez, O.: Vis and UV photocatalytic detoxification methods (using \(\text{TiO}_{2}\), \(\text{TiO}_{2}/\text{H}_{2}\text{O}_{2}\), \(\text{TiO}_{2}/\text{S}_{2}\text{O}_{8}^{2-}\), \(\text{O}_{3}\), \(\text{H}_{2}\text{O}_{2}\), \(\text{S}_{2}\text{O}_{8}^{2-}\), \(\text{Fe}^{3+}/\text{H}_{2}\text{O}_{2}\), and \(\text{Fe}^{3+}/\text{H}_{2}\text{O}_{2}/ {\rm C}_{2}\text{O}_{4}^{2-})\) for dyes treatment. Catal. Today 101, 389–395 (2005)

    Article  Google Scholar 

  3. Langlais, B.; Cucurou, B.; Aurelle, Y.; Capdeville, B.; Roques, H.: Improvement of a biological treatment by prior ozonation. Ozone Sci. Eng. 11, 155–168 (1989)

    Article  Google Scholar 

  4. Srinivasan, G.P.; Sikkanthar, A.; Elamaran, A.; Delma, C.R.; Subramaniyan, K.; Somasundaram, S.T.: Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment. J. Coastal Life Med. 2(2), 154–162 (2014)

    Google Scholar 

  5. Chebli, D.; Fourcade, F.; Brosillon, S.; Nacef, S.; Amrane, A.: Supported photocatalysis as a pretreatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acid Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. J. Chem. Technol. Biotechnol. 85, 555–563 (2010)

    Google Scholar 

  6. Vandevivere, P.C.; Bianchi, R.; Verstraete, W.: Treatment and reuse of wastewater from the textile wet processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 72, 289–302 (1998)

    Article  Google Scholar 

  7. Robinson, T.; McMullan, G.; Marchand, R.; Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Article  Google Scholar 

  8. Correia, V.M.; Stephenson, T.; Judd, S.J.: Characterisation of textile wastewaters—a review. Environ. Technol. 15, 917–929 (1994)

    Article  Google Scholar 

  9. Arslan, I.; Bacioglou, A.; Tuhkanen, T.; Bahnemann, D.: \(\text{H}_{2}\text{O}_{2}\text{/UV-C }\) and \(\text{Fe}^{2+}/\text{H}_{2}\text{O}_{2}\text{/UV-C }\) \(\text{TiO}_{2}\)/UV-a treatment for reactive dye wastewater. J. Environ. Eng. 126, 903–911 (2000)

    Article  Google Scholar 

  10. Chaudhuri, S.K.; Sur, B.: Oxidative decolorization of reactive dye solution using fly ash as catalyst. J. Environ. Eng. 126, 583–594 (2000)

    Article  Google Scholar 

  11. Stock, N.L.; Peller, J.; Vinodgopal, K.; Kamat, P.V.: Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 34, 1747–1750 (2000)

    Article  Google Scholar 

  12. Pang, Y.L.; Abdullah, A.Z.: Current status of textile industry wastewater management and research, progress in Malaysia: a review. Clean Soil Air Water 41, 751–764 (2013)

    Article  Google Scholar 

  13. Peternel, I.T.; Koprivanac, N.; Locaric Bozic, A.M.; Kusic, H.M.: Comparative study of a \({\rm UV/TiO}_{2}\), UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J. Hazard. Mater. 148, 477–484 (2007)

    Article  Google Scholar 

  14. Brik, M.; Chamam, B.; Schöberl, P.; Braun, R.; Fuchs, W.: Effect of ozone, chlorine and hydrogen peroxide on the elimination of colour in treated textile wastewater by MBR. Water Sci. Technol. 49, 299–303 (2004)

    Google Scholar 

  15. Mezioud, N.; Bouziane, N.; Malouki, M.; Zertal, A.; Mailhot, G.: Methabenzthiazuron degradation with illuminated \(\text{TiO}_{2}\) aqueous suspensions. Kinetic and reactional pathway investigations. J. Photochem. Photobiol. A Chem. 288, 13–22 (2014)

    Article  Google Scholar 

  16. Munusamy, S.; Aparna, R.S.L.; Prasad, R.G.S.V.: Photocatalytic effect of \(\text{TiO}_{2}\) and the effect of dopants on degradation of brilliant green. Sustain. Chem. Process. 1(4). DOI:10.1186/2043-7129-1-4 (2013)

  17. Choquette-Labbé, M.; Shewa, W.A.; Lalman, J.A.; Shanmugam, S.R.: Photocatalytic degradation of phenol and phenol derivatives using a nano-\(\text{TiO}_{2}\) catalyst: integrating quantitative and qualitative factors using response surface methodology. Water 6(6), 1785–1806 (2014)

    Article  Google Scholar 

  18. Woan, K.; Pyrgiotakis, G.; Sigmund, W.: Photocatalytic carbon-nanotube-\(\text{TiO}_{2}\) composites. Adv. Mater. 21, 2233–2239 (2009)

    Article  Google Scholar 

  19. Mc Cullagh, C.; Skillen, N.; Adams, M.; Robertson, P.K.J.: Photocatalytic reactors for environmental remediation : a review. J. Chem. Technol. Biotechnol. 86, 1002–1017 (2011)

    Article  Google Scholar 

  20. Abd Rauf, M.; Meetani, M.A.; Hisaindee, S.: An overview on the photocatalytic degradation of azo dyes in the presence of \({\text{TiO}}_{2}\) doped with selective transition metals. Desalination 276, 13–27 (2011)

    Article  Google Scholar 

  21. Baransi, K.; Dubowski, Y.; Sabbah, I.: Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res. 46, 789–798 (2012)

    Article  Google Scholar 

  22. Gulyas, H.; Oria Argáez, A.S.; Kong, F.; Liriano Jorge, C.; Eggers, S.: Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether. Environ. Technol. 34, 1393–1403 (2013)

    Article  Google Scholar 

  23. Matos, J.; Laine, J.; Herrmann, J.M.: Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B Environ. 18, 281–291 (1998)

    Article  Google Scholar 

  24. Ocampo-Pérez, R.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Leyva-Ramos, R.: Enhancement of the catalytic activity of \({\text{TiO}}_{2}\) using activated carbon in the photocatalytic degradation of cytarabine. Appl. Catal. B Environ. 104, 177–184 (2011)

    Article  Google Scholar 

  25. Mahmoodi, N.M.; Arami, M.; Zhang, J.: Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon). J. Alloys. Compd. 509, 4754–4764 (2011)

    Article  Google Scholar 

  26. Mc Evoy, J.G.; Cui, W.; Zhang, Z.: Synthesis and characterization of Ag/AgCl-activated carbon composites for enhanced visible light photocatalysis. Appl. Catal. B Environ. 144, 702–712 (2014)

    Article  Google Scholar 

  27. Dhas, P.G.T.N.; Gulyas, H.; Otterpohl, R.: Impact of powdered activated carbon and anion exchange resin on photocatalytic treatment of textile wastewater. J. Environ. Prot. 6, 191–203 (2015)

    Article  Google Scholar 

  28. Chebli, D.; Bouguettoucha, A.; Mekhalef, T.; Nacef, S.; Amrane, A.: Valorization of agricultural waste, Stipa tenassicima fibers, by biosorption of an anionic azo dye, Congo red. Desalination Water Treat. 54(1), 245–254 (2015)

    Article  Google Scholar 

  29. Srivastava, V.C.; Mall, I.D.; Mishra, I.M.: Adsorption of toxic metal ions onto activated carbon study of sorption behavior through characterization and kinetics. Chem. Eng. Process. 47, 1269–1280 (2008)

    Article  Google Scholar 

  30. Weber, W.J.; Morris, J.C.: Equilibrium and capacities for adsorption on carbon. J. Sanit. Eng. Div. ASCE 89, 31–60 (1963)

    Google Scholar 

  31. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

    Article  Google Scholar 

  32. Freundlich, H.M.F.: Over the adsorption in solution (in German). Z. Phys. Chem. (Leipzig) 57(A), 385–470 (1906)

    Google Scholar 

  33. Bouguettoucha, A.; Chebli, D.; Mekhalef, T.; Noui, A.; Amrane, A.: The use of a forest waste biomass, cone of Pinus brutia for the removal of an anionic azo dye Congo red from aqueous medium. Desalin. Water Treat. 55, 1956–1965 (2015)

    Article  Google Scholar 

  34. Dogan, M.; Alban, M.; Turkyilmaz, A.; Ozdemir, Y.: Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J. Hazard. Mater. 109, 141–148 (2004)

    Article  Google Scholar 

  35. Sari, A.; Tuzen, M.; Citak, D.; Soylak, M.: Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291 (2007)

    Article  Google Scholar 

  36. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). doi:10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  37. Al-Duri, B.: Adsorption modeling and mass transfer. In: McKay, G. (ed.) Use of Adsorbents for the Removal of Pollutants from Wastewaters (133–173). CRC Press, London (1996)

    Google Scholar 

  38. Asenjo, N.G.; Santamaría, R.; Blanco, C.; Granda, M.; Álvarez, P.: Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55, 62–69 (2013)

    Article  Google Scholar 

  39. Gulyas, H.; Tuerk, S.; Torkzadeh, H.: Revisiting the synergistic effect of powdered activated carbon on photocatalytic oxidation of phenol solutions. In: The 3rd International Conference on Photocatalytic and Advanced Oxidation Technologies for the Treatment of Water, Air, Soil and Surfaces (PAOT-3), Gdansk University of Technology, Gdansk, Poland, September 1–4 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bouguettoucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agueniou, F., Chebli, D., Reffas, A. et al. Impact of \(\hbox {TiO}_{2}\)–Cation Exchange Resin Composite on the Removal of Ethyl Violet. Arab J Sci Eng 43, 2451–2463 (2018). https://doi.org/10.1007/s13369-017-2857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2857-8

Keywords

Navigation