Skip to main content

Advertisement

Log in

Sintering and Coking: Effect of Preparation Methods on the Deactivation of \(\hbox {Co}\)\(\hbox {Ni/TiO}_{2}\) in Fischer–Tropsch Synthesis

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main challenge of this work is study effect of preparation methods, co-precipitation and sol–gel, on the deactivation of \(\hbox {Co}\)\(\hbox {Ni/TiO}_{2}\) catalysts in Fischer–Tropsch synthesis. Revealed that coking and sintering are two main mechanisms which have a significant influence on the deactivation of the catalyst. The catalysts were tested under industrially conditions (\(T=350\,{^{\circ }}\hbox {C}\), \(P=10\,\hbox {bar}\), \(\hbox {H}_{2}/\hbox {CO}=2\) and \(\hbox {GHSV}=7200\,\hbox {h}^{-1})\) and during 300 h on stream. Although CO conversion and product selectivity were similar for both catalysts, the sample prepared by co-precipitation method showed a better catalytic performance. The mechanisms of deactivation were interpreted using TPR, TEM/EDS and XRD techniques. Depicted that coking and sintering are two predominate mechanisms for deactivation of co-precipitation and sol–gel catalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atashi, H.; Siami, F.; Mirzaei, A.; Sarkari, M.: Kinetic study of Fischer–Tropsch process on titania-supported cobalt–manganese catalyst. J. Ind. Eng. Chem. 16(6), 952–961 (2010)

    Article  Google Scholar 

  2. Haarlemmer, G.; Boissonnet, G.; Peduzzi, E.; Setier, P.-A.: Investment and production costs of synthetic fuels-a literature survey. Energy 66, 667–676 (2014)

    Article  Google Scholar 

  3. Fox, E.B.; Liu, Z.-W.; Liu, Z.-T.: Ultraclean fuels production and utilization for the twenty-first century: advances toward sustainable transportation fuels. Energy Fuels 27(11), 6335–6338 (2013)

    Article  Google Scholar 

  4. Davis, B.H.: Fischer–Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind. Eng. Chem. Res. 46(26), 8938–8945 (2007)

    Article  Google Scholar 

  5. de Smit, E.; Weckhuysen, B.M.: The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37(12), 2758–2781 (2008)

    Article  Google Scholar 

  6. Khodakov, A.Y.; Chu, W.; Fongarland, P.: Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107(5), 1692–1744 (2007)

    Article  Google Scholar 

  7. Hinchiranan, S.; Zhang, Y.; Nagamori, S.; Vitidsant, T.; Tsubaki, N.: TiO2 promoted Co/SiO2 catalysts for Fischer–Tropsch synthesis. Fuel Process. Technol. 89(4), 455–459 (2008)

    Article  Google Scholar 

  8. Tsakoumis, N.E.; Rønning, M.; Borg, Ø.; Rytter, E.; Holmen, A.: Deactivation of cobalt based Fischer–Tropsch catalysts: a review. Catal. Today 154(3), 162–182 (2010)

    Article  Google Scholar 

  9. Saib, A.; Moodley, D.; Ciobîcă, I.; Hauman, M.; Sigwebela, B.; Weststrate, C.; Niemantsverdriet, J.; Van de Loosdrecht, J.: Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. Today 154(3), 271–282 (2010)

    Article  Google Scholar 

  10. Sadeqzadeh, M.; Chambrey, S.P.; Hong, J.; Fongarland, P.; Luck, F.; Curulla-Ferré, D.; Schweich, D.; Bousquet, J.; Khodakov, A.Y.: Effect of different reaction conditions on the deactivation of alumina-supported cobalt Fischer–Tropsch catalysts in a milli-fixed-bed reactor: experiments and modeling. Ind. Eng. Chem. Res. 53(17), 6913–6922 (2014)

    Article  Google Scholar 

  11. Bartholomew, C.H.: Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212(1), 17–60 (2001)

    Article  Google Scholar 

  12. Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S.: A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4(8), 2210–2229 (2014)

    Article  Google Scholar 

  13. Sehested, J.; Gelten, J.A.; Helveg, S.: Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants. Appl. Catal. A Gen. 309(2), 237–246 (2006)

    Article  Google Scholar 

  14. Claeys, M.; Dry, M.E.; van Steen, E.; van Berge, P.J.; Booyens, S.; Crous, R.; van Helden, P.; Labuschagne, J.; Moodley, D.J.; Saib, A.M.: Impact of process conditions on the sintering behavior of an alumina-supported cobalt Fischer–Tropsch catalyst studied with an in situ magnetometer. ACS Catal. 5(2), 841–852 (2015). doi:10.1021/cs501810y

    Article  Google Scholar 

  15. Rytter, E.; Holmen, A.: Deactivation and regeneration of commercial type Fischer–Tropsch Co-catalysts–a mini-review. Catalysts 5(2), 478–499 (2015)

    Article  Google Scholar 

  16. Wang, W.-J.; Chen, Y.-W.: Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Appl. Catal. 77(2), 223–233 (1991)

    Article  Google Scholar 

  17. Dalai, A.; Davis, B.: Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. A Gen. 348(1), 1–15 (2008)

    Article  Google Scholar 

  18. Eschemann, T.O.; de Jong, K.P.: Deactivation behavior of Co/TiO2 catalysts during Fischer–Tropsch synthesis. ACS Catal. 5(6), 3181–3188 (2015)

    Article  Google Scholar 

  19. Azizi, H.R.; Mirzaei, A.A.; Kaykhaii, M.; Mansouri, M.: Fischer–Tropsch synthesis: studies effect of reduction variables on the performance of Fe–Ni–Co catalyst. J. Nat. Gas Sci. Eng. 18, 484–491 (2014)

    Article  Google Scholar 

  20. Arsalanfar, M.; Mirzaei, A.; Bozorgzadeh, H.: Effect of preparation method on catalytic performance, structure and surface reaction rates of MgO supported Fe–Co–Mn catalyst for CO hydrogenation. J. Ind. Eng. Chem. 19(2), 478–487 (2013)

    Article  Google Scholar 

  21. Xiaoping, D.; Changchun, Y.; Ranjia, L.: Deactivation of CeO2-promoted Co/SiO2 Fischer–Tropsch catalysts. Chin. J. Catal. 28(12), 1047–1052 (2007)

    Article  Google Scholar 

  22. Jalama, K.; Coville, N.J.; Hildebrandt, D.; Glasser, D.; Jewell, L.L.; Anderson, J.A.; Taylor, S.; Enache, D.; Hutchings, G.J.: Effect of the addition of Au on Co/TiO 2 catalyst for the Fischer–Tropsch reaction. Topics Catal. 44(1), 129–136 (2007)

    Article  Google Scholar 

  23. Morales, F.; de Groot, F.M.; Glatzel, P.; Kleimenov, E.; Bluhm, H.; Hävecker, M.; Knop-Gericke, A.; Weckhuysen, B.M.: In situ X-ray absorption of Co/Mn/TiO2 catalysts for Fischer–Tropsch synthesis. J. Phys. Chem. B 108(41), 16201–16207 (2004)

    Article  Google Scholar 

  24. van Steen, E.; Claeys, M.; Dry, M.E.; van de Loosdrecht, J.; Viljoen, E.L.; Visagie, J.L.: Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. J. Phys. Chem. B 109(8), 3575–3577 (2005)

    Article  Google Scholar 

  25. Moodley, D.J.; Saib, A.M.; van de Loosdrecht, J.; Welker-Nieuwoudt, C.A.; Sigwebela, B.H.; Niemantsverdriet, J.: The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer–Tropsch synthesis catalysts. Catal Today 171(1), 192–200 (2011)

    Article  Google Scholar 

  26. Jabłoński, J.M.; Wołcyrz, M.; Krajczyk, L.: On cobalt silicate formation during high-temperature calcination of impregnated cobalt/silica catalysts. J. Catal. 173(2), 530–534 (1998)

    Article  Google Scholar 

  27. Ernst, B.; Libs, S.; Chaumette, P.; Kiennemann, A.: Preparation and characterization of Fischer–Tropsch active Co/SiO2 catalysts. Appl. Catal. A Gen. 186(1), 145–168 (1999)

    Article  Google Scholar 

  28. Carvalho, A.; Ordomsky, V.V.; Luo, Y.; Marinova, M.; Muniz, A.R.; Marcilio, N.R.; Khodakov, A.Y.: Elucidation of deactivation phenomena in cobalt catalyst for Fischer–Tropsch synthesis using SSITKA. J. Catal. 344, 669–679 (2016)

    Article  Google Scholar 

  29. Casci, J.L.; Lok, C.M.; Shannon, M.D.: Fischer–Tropsch catalysis: the basis for an emerging industry with origins in the early 20th Century. Catal. Today 145(1), 38–44 (2009)

    Article  Google Scholar 

  30. Monshi, A.; Foroughi, M.R.; Monshi, M.R.: Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2(3), 154–160 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowlati, M., Siyavashi, N. & Azizi, H.R. Sintering and Coking: Effect of Preparation Methods on the Deactivation of \(\hbox {Co}\)\(\hbox {Ni/TiO}_{2}\) in Fischer–Tropsch Synthesis. Arab J Sci Eng 43, 2441–2450 (2018). https://doi.org/10.1007/s13369-017-2845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2845-z

Keywords

Navigation