Skip to main content

Advertisement

Log in

Effects of Binary and Ternary Blended Cements Made from Palm Oil Fuel Ash and Rice Husk Ash on Alkali–Silica Reaction of Mortar

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Alkali–silica reaction (ASR) of binary and ternary blended cement mortars made from fine particles of palm oil fuel ash (PA) and rice husk ash (RA) was investigated. Portland cement type I was replaced by PA, RA, and RA mixed with PA at rates of 10, 20, 30, and 40% by weight of binder and was used for casting mortar to investigate compressive strength and expansion due to ASR. After finishing ASR test, microstructures of the mortars due to ASR were also investigated by scanning electron microscope and energy-dispersive X-ray spectrometer. The results showed that PA and RA are good pozzolans considering in terms of compressive strength. For ASR results, the expansions of PA mortars due to ASR were lower than control mortar, while the mortars containing RA had very high expansion and many cracks. However, RA–PA mortars provided lower expansion due to ASR than RA mortars at the same rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palm Oil: world supply and distribution. United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis (2015)

  2. Palm kernel shells as biomass resource. Bioenergy consult. Retrieved 6 June 2016 from http://www.bioenergyconsult.com/tag/palm-oil-biomass/

  3. Tangchirapat, W.; Tangpagasit, J.; Waew-kum, S.; Jaturapitakkul, C.: A new pozzolanic material from palm oil fuel ash. KMUTT Res. Dev. J. 26(4), 459–474 (2003)

    Google Scholar 

  4. Tangchirapat, W.; Saeting, T.; Jaturapitakkul, C.; Kiattikomol, K.; Siripanichgorn, A.: Use of waste ash from palm oil industry in concrete. Waste Manag. 27(1), 81–88 (2007)

    Article  Google Scholar 

  5. Jaturapitakkul, C.; Kiattikomol, K.; Tangchirapat, W.; Saeting, T.: Evaluation of the sulfate resistance of concrete containing palm oil fuel ash. Constr. Build. Mater. 21(7), 1399–1405 (2007)

    Article  Google Scholar 

  6. Tangchirapat, W.; Jaturapitakkul, C.: Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash. Cem. Concr. Compos. 32(10), 767–774 (2010)

    Article  Google Scholar 

  7. Kroehong, W.; Damrongwiriyanupap, N.; Sinsiri, T.; Jaturapitakkul, C.: The effect of palm oil fuel ash as a supplementary cementitious material on chloride penetration and microstructure of blended cement paste. Arabian J. Sci. Eng. 41(12), 4799–4808 (2016)

    Article  Google Scholar 

  8. Rice: World Supply and Distribution. United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis (2015)

  9. Rice straw as bioenergy resource: Bioenergy consult. Retrieved 6 June 2016 from http://www.bioenergyconsult.com/rice-straw-as-bioenergy-resource/

  10. Zhang, M.H.; Malhotra, V.M.: High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater. J. 93(6), 629–636 (1996)

    Google Scholar 

  11. Cordeiro, G.C.; Toledo Filho, R.D.; de Moraes Rego Fairbairn, E.: Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete. Mater. Struct. 42(7), 983 (2009)

    Article  Google Scholar 

  12. Touma, W.E.; Fowler, D.F.; Carrasquillo, R.L.: Alkali–silica reaction in portland cement concrete: testing methods and mitigation alternatives. Research Report ICAR 301-1F, International Center for Aggregate Research (2001)

  13. Hanks, D.L.; Young, D.T.: Accelerated testing and mitigation of the alkali–silica reaction using low-calcium fly ash. In: The 4th CANMET/ACI International Conference on Durability of Concrete, Supplementary Papers, Sydney, Australia, pp. 205–220 (1997)

  14. Kakodkar, S.; Ramakrishnan, V.; Zimmerman, L.: Addition of class C fly ash to control expansions due to alkali-silica reaction. Transp. Res. Rec. 1458, 109–117 (1994)

    Google Scholar 

  15. Awal, A.A.; Hussin, M.W.: The effectiveness of palm oil fuel ash in preventing expansion due to alkali–silica reaction. Cem. Concr. Compos. 19(4), 367–372 (1997)

    Article  Google Scholar 

  16. Zerbino, R.; Giaccio, G.; Batic, O.R.; Isaia, G.C.: Alkali–silica reaction in mortars and concretes incorporating natural rice husk ash. Constr. Build. Mater. 36, 796–806 (2012)

    Article  Google Scholar 

  17. Moser, R.D.; Jayapalan, A.R.; Garas, V.Y.; Kurtis, K.E.: Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali–silica reaction mitigation in concrete. Cem. Concr. Res. 40(12), 1664–1672 (2010)

    Article  Google Scholar 

  18. ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA (2012)

  19. Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C.: Effect of palm oil fuel ash fineness on packing effect and pozzolanic reaction of blended cement paste. Procedia Eng. 14, 361–369 (2011)

    Article  Google Scholar 

  20. Chindaprasirt, P.; Homwuttiwong, S.; Jaturapitakkul, C.: Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Constr. Build. Mater. 21(7), 1492–1499 (2007)

    Article  Google Scholar 

  21. Arahori, T.; Suzuki, T.: Transformation of tridymite to cristobalite below \(1470^{\circ }\text{ C }\) in silica refractories. J. Mater. Sci. 22(6), 2248–2252 (1987)

    Article  Google Scholar 

  22. ASTM C1260: Standard test method for potential alkali reactivity of aggregates (mortar-bar method). ASTM International, West Conshohocken, PA (2014)

  23. ASTM C1437: Standard test method for flow of hydraulic cement mortar. ASTM International, West Conshohocken, PA (2015)

  24. ASTM C109/C109M: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA (2013)

  25. ASTM C311/C311M: Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete. ASTM International, West Conshohocken, PA (2013)

  26. ASTM C490/C490M: Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM International, West Conshohocken, PA (2011)

  27. ASTM C1778: Standard guide for reducing the risk of deleterious alkali-aggregate reaction in concrete. ASTM International, West Conshohocken, PA (2016)

  28. Glasser, L.D.; Kataoka, N.: On the role of calcium in the alkali-aggregate reaction. Cem. Concr. Res. 12(3), 321–331 (1982)

  29. Isaia, G.C.; Gastaldini, A.L.G.; Moraes, R.: Physical and pozzolanic action of mineral additions on the mechanical strength of high performance concrete. Cem. Concr. Res. 25(1), 69–76 (2003)

    Article  Google Scholar 

  30. Maas, A.J.; Ideker, J.H.; Juenger, M.C.: Alkali silica reactivity of agglomerated silica fume. Cem. Concr. Res. 37(2), 166–174 (2007)

    Article  Google Scholar 

  31. Boddy, A.; Hooton, R.; Thomas, M.: The effect of the silica content of silica fume on its ability to control alkali–silica reaction. Cem. Concr. Res. 33(8), 1263–1268 (2003)

    Article  Google Scholar 

  32. Topçu, İ.B.; Boğa, A.R.; Bilir, T.: Alkali–silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and \(\text{Li}_{2} \text{CO}_{3}\). Waste Manag. 28(5), 878–884 (2008)

    Article  Google Scholar 

  33. Ramyar, K.; Çopuroğlu, O.; Andiç, Ö.; Fraaij, A.L.A.: Comparison of alkali–silica reaction products of fly-ash or lithium-salt-bearing mortar under long-term accelerated curing. Cem. Concr. Res. 34(7), 1179–1183 (2004)

    Article  Google Scholar 

  34. Shafaatian, S.M.H.; Akhavan, A.; Maraghechi, H.; Rajabipour, F.: How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)? Cem. Concr. Compos. 37, 143–153 (2013)

    Article  Google Scholar 

  35. Le, H.T.; Siewert, K.; Ludwig, H.M.: Alkali silica reaction in mortar formulated from self-compacting high performance concrete containing rice husk ash. Constr. Build. Mater. 88, 10–19 (2015)

    Article  Google Scholar 

  36. Esteves, T.C.; Rajamma, R.; Soares, D.; Silvac, A.S.; Ferreira, V.M.; Labrincha, J.A.: Use of biomass fly ash for mitigation of alkali–silica reaction of cement mortars. Constr. Build. Mater. 26(1), 687–693 (2012)

    Article  Google Scholar 

  37. Zerbino, R.; Giaccio, G.; Marfil, S.: Evaluation of alkali–silica reaction in concretes with natural rice husk ash using optical microscopy. Constr. Build. Mater. 71, 132–140 (2014)

    Article  Google Scholar 

  38. Knudsen, T.; Thaulow, N.: Quantitative microanalyses of alkali–silica gel in concrete. Cem. Concr. Res. 5(5), 443–454 (1975)

    Article  Google Scholar 

  39. Fernandes, I.: Composition of alkali–silica reaction products at different locations within concrete structures. Mater. Charact. 60(7), 655–668 (2009)

    Article  Google Scholar 

  40. Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D.A.: Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 42(2), 223–243 (2012)

    Article  Google Scholar 

  41. Duchesne, J.; Bérubé, M.A.: Effect of supplementary cementing materials on the composition of cement hydration products. Adv. Cem. Based Mater. 2(2), 43–52 (1995)

    Article  Google Scholar 

  42. Khan, M.H.; Mohan, K.; Taylor, H.F.W.: Pastes of tricalcium silicate with rice husk ash. Cem. Concr. Res. 15(1), 89–92 (1985)

    Article  Google Scholar 

  43. Wang, A.; Zhang, C.; Tang, M.; Zhang, N.: ASR in mortar bars containing silica glass in combination with high alkali and high fly ash contents. Cem. Concr. Compos. 21(5), 375–381 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chai Jaturapitakkul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramjan, S., Tangchirapat, W. & Jaturapitakkul, C. Effects of Binary and Ternary Blended Cements Made from Palm Oil Fuel Ash and Rice Husk Ash on Alkali–Silica Reaction of Mortar. Arab J Sci Eng 43, 1941–1954 (2018). https://doi.org/10.1007/s13369-017-2843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2843-1

Keywords

Navigation