Skip to main content

Valorization of Paper Mill Sludge as Adsorbent in Adsorption Process of Copper (II) Ion from Synthetic Solution: Kinetic, Isotherm and Thermodynamic Studies


This study investigates the process conditions of the adsorption of copper (II) ion onto paper mill sludge (PMS) in a batch process. These conditions are: concentration of initial solution, contact time, temperature and quantity of the adsorbent. Characteristic properties of PMS employed as an adsorbent in the experiments were defined using Fourier transform infrared spectroscopy (FT-IR) scanning electron microscopy (SEM) and elemental analyses. According to the obtained results, while the amount of removed copper (II) ion increased with an increase in the rate of the adsorbent and contact time, it decreased as a result of an increase in the temperature and initial solution concentration. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms were implemented for the determination of the most appropriate isotherm model for the experimental data, and it was found that the process is in concordance with Langmuir equation. The maximum adsorption capacity of PMS was calculated as 114.42 mg g\(^{-1}\). In kinetic studies, the adsorption process of copper (II) ion onto PMS was controlled by the pseudo-second-order kinetic model. The calculated activation value (\(E_{\mathrm{a}})\) was 38.61 kJ mol\(^{-1}\) and demonstrates that the process occurred by physical adsorption mechanism. The values of the thermodynamic parameters such as enthalpy (\(\Delta {H}^{{{ O}}})\,(-21.19\,\hbox {kJ\,mol}^{-1})\), free energy (\(\Delta {G}^{\mathrm{O}}\)) (−8.883 kJ mol\(^{-1}\)) and entropy (\(\Delta {S}^{\mathrm{O}})\) (0.101 kJ mol\(^{-1}\) K\(^{-1}\)) changes were determined to estimate the nature of the process. The results clearly showed that the process was of exothermic and spontaneous nature and that PMS could be utilized as an adsorbent for the removal of copper (II) ion from wastewater.

This is a preview of subscription content, access via your institution.


\(C_{\mathrm{o}}\) :

Initial concentration of Cu (II) solution (mM)

\(C_{\mathrm{s}}\) :

Final concentration of Cu (II) solution (mM)

\(C_{\mathrm{e}}\) :

Cu (II) concentration in solution at equilibrium (mM L\(^{-1})\)

\(q_{\mathrm{e}}\) :

Amount of Cu (II) ions adsorbed per unit mass of adsorbent (mM g\(^{-1}\))

\(q_{\max }\) :

Maximum adsorption capacity (mM g\(^{-1})\)

v :

Volume of the solution (L)

m :

Amount of adsorbent (g)

\(q_{\mathrm{e}}\) :

Amount of Cu (II) ions adsorbed at equilibrium (mM g\(^{-1}\))

\(q_{\mathrm{t}}\) :

Amount of Cu (II) ions adsorbed at time t (mM g\(^{-1}\))

\(k_{1}\) :

Pseudo-first-order reaction rate constant (min\(^{-1})\)

\(k_{2}\) :

Pseudo-second-order reaction rate constant (g mM\(^{-1}\) min\(^{-1})\)

\(k_{i}\) :

Intra-particle diffusion rate constant (mM g\(^{-1}\) min\(^{-1/2})\)

b :

Adsorption energy (L mM\(^{-1})\)

\(K_{\mathrm{f}}\) :

Adsorption capacity (mg g\(^{-1})\)

n :

Adsorption intensity

\(q_{\mathrm{m}}\) :

Maximum amount of Cu (II) ion adsorbed onto unit weight of adsorbent (mg g\(^{-1})\)

\(\beta \) :

Adsorption energy (mol\(^{2}\) kJ\(^{-2})\)

\(\varepsilon \) :

Polanyi potential

R :

Universal gas constant (kJ mol\(^{-1}\) K\(^{-1})\)

T :

Temperature (K)

r :

Separation factor

b :

Langmuir constant (L mM\(^{-1})\)

m / V :

Adsorbent/solution ratio (g L\(^{-1})\)

\(b_{\mathrm{o}}\) :

A constant

\(\Delta H^{\mathrm{o}}\) :

Enthalpy (kJ mol\(^{-1}\))

\(\Delta S^{\mathrm{o}}\) :

Entropy (kJ mol\(^{-1}\) K\(^{-1}\))

\(\Delta G^{\mathrm{o}}\) :

Gibbs free energy (kJ mol\(^{-1}\))


  1. Ong, S.-A.; et al.: Comparative study on kinetic adsorption of Cu (II), Cd (II) and Ni (II) ions from aqueous solutions using activated sludge and dried sludge. Appl. Water Sci. 3(1), 321–325 (2013)

    Article  MathSciNet  Google Scholar 

  2. Soetaredjo, F.E.; et al.: Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chem. Eng. J. 219, 137–148 (2013)

    Article  Google Scholar 

  3. Şengil, İ.A.; Özacar, M.; Türkmenler, H.: Kinetic and isotherm studies of Cu (II) biosorption onto valonia tannin resin. J. Hazard. Mater. 162(2), 1046–1052 (2009)

    Google Scholar 

  4. Liu, Y.; Sun, X.; Li, B.: Adsorption of Hg 2+ and Cd 2+ by ethylenediamine modified peanut shells. Carbohydr. Polym. 81(2), 335–339 (2010)

    Article  Google Scholar 

  5. Zhu, B.; Fan, T.; Zhang, D.: Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater. 153(1), 300–308 (2008)

    Article  Google Scholar 

  6. Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.: Ion-exchange-assisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: a mass-transfer study. Ind. Eng. Chem. Res. 52(33), 11655–11662 (2013)

    Article  Google Scholar 

  7. Rivas, B.L.; Palencia, M.: Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: a new hybrid method of membrane-based separation. Sep. Purif. Technol. 81(3), 435–443 (2011)

    Article  Google Scholar 

  8. Lovell, A.; et al.: Biosorption and chemical precipitation of lead using biomaterials, molecular sieves, and chlorides, carbonates, and sulfates of Na & Ca. J. Environ. Protect. 4(11):1251 (2013)

  9. Vasudevan, S.; Lakshmi, J.: Process conditions and kinetics for the removal of copper from water by electrocoagulation. Environ. Eng. Sci. 29(7), 563–572 (2012)

    Article  Google Scholar 

  10. Vasudevan, S.; et al.: A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics. Asia-Pac. J. Chem. Eng. 8(1), 162–171 (2013)

    Article  Google Scholar 

  11. Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Electrocoagulation studies on the removal of copper from water using mild steel electrode. Water Environ. Res. 84(3), 209–219 (2012)

    Article  Google Scholar 

  12. Singha, B.; Das, S.K.: Adsorptive removal of Cu (II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. B 107, 97–106 (2013)

    Article  Google Scholar 

  13. Vasudevan, S.; Lakshmi, J.: The adsorption of phosphate by graphene from aqueous solution. Rsc Adv. 2(12), 5234–5242 (2012)

    Article  Google Scholar 

  14. Yargıç, A.; et al.: Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88, 152–159 (2015)

    Article  Google Scholar 

  15. Taşar, Ş.; Kaya, F.; Özer, A.: Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 2(2), 1018–1026 (2014)

    Article  Google Scholar 

  16. Monte, M.C.; et al.: Waste management from pulp and paper production in the European Union. Waste Manage. (Oxford) 29(1), 293–308 (2009)

    Article  Google Scholar 

  17. Ahmaruzzaman, M.: Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 166(1), 36–59 (2011)

    Article  Google Scholar 

  18. Garcia Alba, L.; et al.: Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 26(1), 642–657 (2011)

    Article  Google Scholar 

  19. Gavrilescu, D.: Energy from biomass in pulp and paper mills. Environ. Eng. Manag. J. 7(5), 537–546 (2008)

    Google Scholar 

  20. He, X.; et al.: Paper sludge as a feasible soil amendment for the immobilization of Pb 2+. J. Environ. Sci. 22(3), 413–420 (2010)

    Article  Google Scholar 

  21. Bajpai, P.: Management of Pulp and Paper Mill Waste. Springer, Berlin (2015)

    Book  Google Scholar 

  22. Largergren, S.: Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  23. Ho, Y.; et al.: Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18(7), 639–650 (2000)

    Article  Google Scholar 

  24. Weber, W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89(2), 31–60 (1963)

    Google Scholar 

  25. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  26. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100–1107 (1906)

    Google Scholar 

  27. Dubinin, M.: Porous structure and adsorption properties of active carbons. Chem. Phys. Carbon 2, 51–120 (1966)

    Google Scholar 

  28. Arslanoglu, H.; Altundogan, H.S.; Tumen, F.: Heavy metals binding properties of esterified lemon. J. Hazard. Mater. 164(2), 1406–1413 (2009)

    Article  Google Scholar 

  29. Torab-Mostaedi, M.; et al.: Removal of cadmium and nickel from aqueous solution using expanded perlite. Braz. J. Chem. Eng. 27(2), 299–308 (2010)

  30. Mohamad, S.; et al.: Removal of phosphate by paper mill sludge: adsorption isotherm and kinetic study. Asian J. Chem. 26(12), 3545 (2014)

    Google Scholar 

  31. Aksu, Z.; İşoğlu, İ.A.: Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 40(9), 3031–3044 (2005)

    Article  Google Scholar 

  32. Weng, C.-H.; et al.: Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol. Eng. 67, 127–133 (2014)

    Article  Google Scholar 

  33. Ganesan, P.; Kamaraj, R.; Vasudevan, S.: Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 44(5), 808–814 (2013)

    Article  Google Scholar 

  34. Yao, Z.-Y.; Qi, J.-H.; Wang, L.-H.: Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell. J. Hazard. Mater. 174(1), 137–143 (2010)

    Article  Google Scholar 

  35. Vasudevan, S.; Lakshmi, J.; Packiyam, M.: Electrocoagulation studies on removal of cadmium using magnesium electrode. J. Appl. Electrochem. 40(11), 2023–2032 (2010)

    Article  Google Scholar 

  36. Kamaraj, R.; et al.: Eco-friendly and easily prepared graphenenanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides. ChemistrySelect 2(1), 342–355 (2017)

    Article  Google Scholar 

  37. Ansari, T.M.; et al.: Reclamation of wastewater containing Cu (II) using alginated Mentha spicata biomass. Desalin. Water Treat. 57(23), 10700–10709 (2016)

    Article  Google Scholar 

  38. Ali, R.M.; et al.: Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 91, 317–332 (2016)

    Article  Google Scholar 

  39. Yao, Z.-Y.; et al.: Insolubilization of chestnut shell pigment for Cu (II) adsorption from water. Molecules 21(4), 405 (2016)

    Article  Google Scholar 

  40. Zheng, J.-C.; et al.: Removal of Cu (II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J. Hazard. Mater. 171(1), 780–785 (2009)

    Article  Google Scholar 

  41. Dahiya, S.; Tripathi, R.; Hegde, A.: Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J. Hazard. Mater. 150(2), 376–386 (2008)

    Article  Google Scholar 

  42. Rafatullah, M.; et al.: Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 170(2), 969–977 (2009)

    Article  Google Scholar 

  43. Guechi, E.-K.; Hamdaoui, O.: Evaluation of potato peel as a novel adsorbent for the removal of Cu (II) from aqueous solutions: equilibrium, kinetic, and thermodynamic studies. Desalin. Water Treat. 57(23), 10677–10688 (2016)

    Article  Google Scholar 

  44. Janyasuthiwong, S.; et al.: Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes. Environ. Technol. 36(24), 3071–3083 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ali Yaras.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaras, A., Arslanoğlu, H. Valorization of Paper Mill Sludge as Adsorbent in Adsorption Process of Copper (II) Ion from Synthetic Solution: Kinetic, Isotherm and Thermodynamic Studies. Arab J Sci Eng 43, 2393–2402 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Adsorption
  • Copper (II) ion
  • Isotherm
  • Kinetic
  • Thermodynamic
  • Paper mill sludge
  • Heavy metal