Skip to main content
Log in

Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Road planning and construction is a complex and time consuming process. One of the most important components in this process is estimating earthwork. Resolution of DEM, which is commonly used in road planning stage, directly affects success of earthworks estimation and construction costs. Within the scope of this study, capabilities of two different data collection systems (UAV and GNSS) were compared for DEM generation. In the study, two sets of DEMs of Bursa Technical University Kestel campus area were produced using both UAV- and GNSS-based methods. Then, cut and fill volumes were compared with considering UAV-based DEM and GNSS-based DEM depending on reference plane for three different roads. According to NRTK-GNSS-based surveying results, point density was obtained as 35 point/ha, while UAV-based surveying point density was computed as \({\sim } 234{,}385\) point/ha. Using UAV-based DEM as a reference plane, it was found that the volumes of excavations and embankments were very close to each other when the average excavation per unit (i.e., 1 m) road length was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akay, A.E.: Minimizing total costs of forest roads with computer-aided design model. Sadhana 31(5), 621–633 (2006). doi:10.1007/BF02715918

    Article  Google Scholar 

  2. Najafi, A.; Mohammadi Samani, K.: Planning road network in mountain forests using GIS and analytic hierarchical process (AHP). Casp. J. Environ. Sci. 8(2), 151–162 (2010)

    Google Scholar 

  3. Liu, X.: Airborne LiDAR for DEM generation: some critical issues. Prog. Phys. Geogr. 32(1), 31–49 (2008). doi:10.1177/0309133308089496

    Article  Google Scholar 

  4. Akgül, M.; Yurtseven, H.; Demir, M.; Akay, A.E.; Gülci, S.; Öztürk, T.: Usage opportunities of generating digital elevation model with unmanned aerial vehicles on forestry. J. Fac. For. Istanb. Univ. (JFFIU) 66(1), 104–118 (2016). doi:10.17099/jffiu.23976

    Google Scholar 

  5. Fritz, A.; Kattenborn, T.; Koch, B.: UAV-based photogrammetric point clouds—tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 141–146 (2013)

    Article  Google Scholar 

  6. Wallace, L.; Lucieer, A.; Turner, D.; Watson, C.: Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory. In: Proceedings of Silvilaser, Hobart (2011)

  7. Nex, F.; Remondino, F.: UAV for 3D mapping applications: a review. Appl. Geom. 6(1), 1–15 (2014). doi:10.1007/s12518-013-0120-x

    Article  Google Scholar 

  8. Uysal, M.; Toprak, A.; Polat, N.: DEM generation with UAV photogrammetry and accuracy analysis in Sahitler hill. Measurement 73, 539–543 (2015). doi:10.1016/j.measurement.2015.06.010

    Article  Google Scholar 

  9. Saripalli, S.; Montgomery, J.F.; Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003). doi:10.1109/TRA.2003.810239

    Article  Google Scholar 

  10. Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D.: UAV photogrammetry for mapping and 3d modeling-current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(1), C22 (2011)

    Google Scholar 

  11. Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A.: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 4(6), 1671–1692 (2012). doi:10.3390/rs4061671

    Article  Google Scholar 

  12. Salamí, E.; Barrado, C.; Pastor, E.: UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing 6(11), 11051–11081 (2014). doi:10.3390/rs61111051

    Article  Google Scholar 

  13. Colomina, I.; Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97 (2014). doi:10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  14. Kim, J.; Lee, S.; Ahn, H.; Seo, D.; Park, S.; Choi, C.: Feasibility of employing a smartphone as the payload in a photogrammetric UAV system. ISPRS J. Photogramm. Remote Sens. 79, 1–18 (2013). doi:10.1016/j.isprsjprs.2013.02.001

    Article  Google Scholar 

  15. Wilson, J.P.; Fotheringham, A.S.: The handbook of geographic information science. Blackwell companions to geography, vol. 7. Blackwell Publications, Malden (2008)

    MATH  Google Scholar 

  16. Hutchinson, M.F.; Xu, T.; Stein, J.A.: Recent progress in the ANUDEM elevation gridding procedure. In: Hengel, T.; Evans, I.S.; Wilson, J.P.; Gould, M. (eds.) Geomorphometry 2011, Redlands, pp. 19–22 (2011)

  17. Clarke, K.C.: Analytical and Computer Cartography, vol. 1. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  18. Douglas, D.H.: Experiments to locate ridges and channels to create a new type of digital elevation model. Cartogr. Int. J. Geogr. Inf. Geovis. 23(4), 29–61 (1986). doi:10.3138/D4L1-1525-N578-2578

    Google Scholar 

  19. Wilson, J.P.; Gallant, J.C.: Terrain Analysis: Principles and Applications. Wiley, New York (2000)

    Google Scholar 

  20. Official Gazette of the Republic of Turkey: Large scale map and map information production regulation. In: Republic of Turkey; C.o.M. (eds.) 2005/9070, vol. 25876. Official Gazette of the Republic of Turkey, Turkey (2005)

  21. Makarovic, B.: Regressive rejection—a digital data compression technique. In: Proceedings of ASP/ACSM Fall Technical Meeting, Little Rock (1977)

  22. Makarovic, B.: Structures for geo-information and their application in selective sampling for digital terrain models. ITC J. 4, 285–295 (1984)

    Google Scholar 

  23. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  24. Briggs, I.C.: Machine contouring using minimum curvature. Geophysics 39(1), 39–48 (1974)

    Article  Google Scholar 

  25. Hutchinson, M.: A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 106(3–4), 211–232 (1989). doi:10.1016/0022-1694(89)90073-5

    Article  Google Scholar 

  26. Akima, H.: A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Softw. (TOMS) 4(2), 148–159 (1978)

    Article  MATH  Google Scholar 

  27. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1–4), 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hutchinson, M.; Bischof, R.: A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales. Aust. Meteorol. Mag. 31(3), 179–184 (1983)

    Google Scholar 

  29. Mitas, L.; Mitasova, H.: Spatial interpolation. In: Longley, P., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographical Information Systems: Principles, Techniques, Management and Applications, vol. 1, pp. 481–492. Wiley, New York (1999)

    Google Scholar 

  30. Watson, D.F.: Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, Oxford (1992)

    Google Scholar 

  31. Fisher, P.F.; Tate, N.J.: Causes and consequences of error in digital elevation models. Progr. Phys. Geogr. 30(4), 467–489 (2006)

    Article  Google Scholar 

  32. Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M.P.: An experimental comparison of ordinary and universal Kriging and inverse distance weighting. Math. Geol. 31(4), 375–390 (1999)

    Article  Google Scholar 

  33. Lloyd, C.D.; Atkinson, P.M.: Deriving DSMs from LiDAR data with kriging. Int. J. Remote Sens. 23(12), 2519–2524 (2002)

    Article  Google Scholar 

  34. Podobnikar, T.: Suitable DEM for required application. In: Proceedings of the 4th International Symposium on Digital Earth (2005)

  35. Blaschke, T.; Tiede, D.; Heurich, M.: 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36(8/W2), 129–132 (2004)

    Google Scholar 

  36. Ali, T.A.: On the selection of an interpolation method for creating a terrain model (TM) from LIDAR data. In: Proceedings of the American Congress on Surveying and Mapping (ACSM) Conference (2004)

  37. Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K.: Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 77(1), 126–141 (2006)

    Article  Google Scholar 

  38. Bater, C.W.; Coops, N.C.: Evaluating error associated with lidar-derived DEM interpolation. Comput. Geosci. UK 35(2), 289–300 (2009)

    Article  Google Scholar 

  39. Goodchild, M.F.; Mark, D.M.: The fractal nature of geographic phenomena. Ann. Assoc. Am. Geogr. 77(2), 265–278 (1987)

    Article  Google Scholar 

  40. Band, L.E.: Topographic partition of watersheds with digital elevation models. Water Resour. Res. 22(1), 15–24 (1986)

    Article  Google Scholar 

  41. Hutchinson, M.: A locally adaptive approach to the interpolation of digital elevation models. In: Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, pp. 21–26 (1996)

  42. Environmental Systems Research Institute Inc.: How Topo to Raster Works. http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm (2016). Accessed 08 Aug 2016

  43. Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C.: Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 15(1), 73–79 (2014). doi:10.1016/j.culher.2012.12.003

    Article  Google Scholar 

  44. Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P.: A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4(4), 922–944 (2013). doi:10.3390/f4040922

    Article  Google Scholar 

  45. Snavely, N.; Seitz, S.M.; Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2), 189–210 (2008). doi:10.1007/s11263-007-0107-3

  46. Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E.; Carson, W.W.: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Anglais 29(5), 527–535 (2003). doi:10.5589/m03-022

  47. Aruga, K.; Sessions, J.; Akay, A.E.: Application of an airborne laser scanner to forest road design with accurate earthwork volumes. J. For. Res. 10(2), 113–123 (2005). doi:10.1007/s10310-004-0116-9

    Article  Google Scholar 

  48. Akay, A.E.; Sessions, J.: Applying the decision support system, TRACER, to forest road design. West. J. Appl. For. 20(3), 184–191 (2005)

    Google Scholar 

  49. Contreras, M.; Aracena, P.; Chung, W.: Improving accuracy in earthwork volume estimation for proposed forest roads using a high-resolution digital elevation model. Croat. J. For. Eng. 33(1), 125–142 (2012)

    Google Scholar 

  50. Siebert, S.; Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014). doi:10.1016/j.autcon.2014.01.004

    Article  Google Scholar 

  51. Eisenbeiß, H.: UAV Photogrammetry. ETH Zurich, Zurich (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Akgul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgul, M., Yurtseven, H., Gulci, S. et al. Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume. Arab J Sci Eng 43, 1893–1909 (2018). https://doi.org/10.1007/s13369-017-2811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2811-9

Keywords

Navigation