Skip to main content
Log in

Microscale Numerical Simulation of Non-Darcy Flow of Coalbed Methane

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To obtain the real physical model characterizing the pore structure of coal rocks and further explore the rules governing the flow of coalbed methane (CBM) using numerical simulation, we proposed a sequential method from real coal model to computer-aided designed (CAD) coal model to finite element coal model. First, six different coal samples were scanned using \(\upmu \)CT225kVFCB CT system. The obtained CT data were subject to threshold segmentation using the compensated digital terrain model and a coal model in STL format was established. Then, we elaborated a reverse engineering method to convert the coal model into a CAD coal model. Lastly, we obtained the finite element coal model after setting the boundary conditions with CFX software, numerically simulated CBM flow at 30 different pressure gradients based on the finite element coal model and analyzed the impacts of effective porosity on permeability and seepage velocity of CBM. The results showed that (1) at the microscale (\({<}100\,\upmu \hbox {m}\)), the seepage velocity and pressure gradient were in agreement with the Forchheimer law of high-speed nonlinear seepage; (2) permeability of CBM shows a fluctuating, but not absolute increase with effective porosity increasing; (3) at the same pressure gradient, the overall seepage velocity of CBM increases with the effective porosity increasing, but declines with non-Darcy flow coefficient increasing; (4) the non-Darcy flow coefficient reduces with both effective porosity and permeability increasing. Fitting to power function analysis shows that compared with permeability, the effective porosity has more significant impact on the non-Darcy flow coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Geet, M.; Swennen, R.; David, P.: Quantitative coal characterisation by means of microfocus X-ray computer tomography, colour image analysis and back-scattered scanning electron microscopy. Int. J. Coal Geol. (2001). doi:10.1016/S0166-5162(01)00006-4

  2. Nie, B.; He, X.; Li, X.; Chen, W.; Hu, S.: Meso-structures evolution rules of coal fracture with the computerized tomography scanning method. Eng. Fail. Anal. (2014). doi:10.1016/j.engfailanal.2013.10.007

  3. Li, S.; Tang, D.Z.; Xu, H.; Yang, Z.: Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography. Comput. Geosci. (2012). doi:10.1016/j.cageo.2012.01.004

  4. Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Dtsch. Ing. 45, 1781–1788 (1901)

    Google Scholar 

  5. Guo, X.; Fu, Y.; Du, Z.M.; Shu, Z.Z.: Coupled flow simulation in coalbed methane reservoirs. SPE 91397. (2004). doi:10.2118/91397-MS

  6. Wang, J.G.; Liu, J.; Kabir, A.: Combined effects of directional compaction, non-Darcy flow and anisotropic swelling on coal seam gas extraction. Int. J. Coal Geol. (2013). doi:10.1016/j.coal.2013.01.009

  7. Ye, Z.H.; Chen, D.; Wang, J.G.: Evaluation of the non-Darcy effect in coalbed methane production. Fuel (2014). doi:10.1016/j.fuel.2013.12.019

  8. Wang, X.Q.; Wang, Z.M.; Zeng, Q.S.; Yang, G.; Chen, T.; Guo, X.: Non-Darcy effect on fracture parameters optimization in fractured CBM horizontal well. J. Nat. Gas Sci. Eng. (2015). doi:10.1016/j.jngse.2015.10.010

  9. Jeong, N.; Choi, D.H.; Lin, C.L.: Prediction of Darcy–Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method. J. Micromech. Microeng. (2006). doi:10.1088/0960-1317/16/10/042

  10. Chai, Z.; Shi, B.; Lu, J.; Guo, Z.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids (2010). doi:10.1016/j.compfluid.2010.07.012

  11. Sukop, M.C.; Huang, H.; Alvarez, P.F.; Variano, E.A.; Cunningham, K.J.: Evaluation of permeability and nonc-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods. Water Resour. Res. (2013). doi:10.1029/2011WR011788

  12. Sheikholeslami, M.: Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Physica B (2017). doi:10.1016/j.physb.2017.04.029

  13. Yoo, D.J.: Three-dimensional surface reconstruction of human bone using a B-spline based interpolation approach. Comput. Aided Des. (2011). doi:10.1016/j.cad.2011.03.002

  14. Zhu, X.L.; Ai, S.G.; Lu, X.F.; Cheng, K.; Ling, X.; Zhu, L.X.; Liu, B.: Collapse models of aluminum foam sandwiches under static three-point bending based on 3D geometrical reconstruction. Comput. Mater. Sci. (2014). doi:10.1016/j.commatsci.2013.12.055

  15. He, X.M.: Coal Chemistry. Metallurgical Industry Press, Beijing (2010)

    Google Scholar 

  16. Razak, K.A.; Santangelo, M.; Van Westen, C.J.; Straatsma, M.W.; De Jon, S.M.: Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology (2013). doi:10.1016/j.geomorph.2013.02.021

  17. Bonetto, S.; Facello, A.; Ferrero, A.M.; Umili, G.: A tool for semi-automatic linear feature detection based on DTM. Comput. Geosci. (2015). doi:10.1016/j.cageo.2014.10.005

  18. Maguya, A.S.; Junttila, V.; Kauranne, T.: Adaptive algorithm for large scale DTM interpolation from lidar data for forestry applications in steep forested terrain. ISPRS J. Photogramm. (2013). doi:10.1016/j.isprsjprs.2013.08.005

  19. Polat, N.; Uysal, M.: Investigating performance of Airborne LiDAR data filtering algorithms for DTM generation. Measurement. (2015). doi:10.1016/j.measurement.2014.12.017

  20. Taud, H.; Martinez-Angeles, R.; Parrot, J.F.; Hernandez-Escobedo, L.: Porosity estimation method by X-ray computed tomography. J. Petrol. Sci. Eng. (2005). doi:10.1016/j.petrol.2005.03.009

  21. Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton Scott, M.A.; Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Method Appl. Mech. Eng. (2010). doi:10.1016/j.cma.2009.02.036

  22. Li, Q.; Gao, S.S.; Liu, H.X.; Ye, L.Y.; Gai, Z.H.: Core permeability calculation methods and application scopes. Nat. Gas Ind. 35(3), 68–73 (2015). doi:10.3787/j.issn.1000-0976.2015.03.010

    Google Scholar 

  23. Ji, W.D.; Yang, C.H.; Liu, W.; Li, M.M.: Experimental investigation on meso-pore structure properties of bedded salt rock. Chin. J. Rock Mech. Eng. 32(10), 2036–2044 (2013)

    Google Scholar 

  24. Li, M.L.; Li, W.Q.: Geological Foundation of Oil and Gas Field Development. Petroleum Industry Press, Beijing (1981)

    Google Scholar 

  25. Li, S.C.; Miao, X.X.; Chen, Z.Q.; Mao, X.B.: Experimental study on seepage properties of non-Darcy flow in confined broken rocks. Eng. Mech. 25(4), 85–92 (2008)

    Google Scholar 

  26. Huang, X.W.; Tang, P.; Miao, X.X.; Chen, Z.Q.: Testing study on seepage properties of broken sandstone. Rock Soil Mech. 26(9), 1385–1388 (2005)

    Google Scholar 

  27. Johnson, T.W.; Taliaferro, D.B.: Flow of Air and Natural Gas Through Porous Media. Bureau of Mines, Bartlesville (1938)

    Google Scholar 

  28. Straughan, B.: Structure of the dependence of Darcy and Forchheimer coefficients on porosity. Int. J. Eng Sci. (2010). doi:10.1016/j.ijengsci.2010.04.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (rar 3606 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yang, X., Chu, X. et al. Microscale Numerical Simulation of Non-Darcy Flow of Coalbed Methane. Arab J Sci Eng 43, 2547–2561 (2018). https://doi.org/10.1007/s13369-017-2802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2802-x

Keywords

Navigation