Skip to main content
Log in

Parametric Studies on Descriptive Isotherms for the Uptake of Crystal Violet Dye from Aqueous Solution onto Lignin-Rich Adsorbent

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates (using six error functions criteria) descriptive isotherm models for adsorbing crystal violet dye (CVD) onto lignin extract. The lignin adsorbent (named PTA) was obtained from palm tree trunk and subjected to physiochemical, Fourier transform infrared (FTIR) and scanning electron microscopic (SEM) analyses. Influences of contact time, dose, particle size, initial CVD concentration and temperature were studied. 53.21% lignin yield was recorded for the adsorbent. SEM images and FTIR spectra indicated significant porosity and lignin presence in the PTA. Average relative error, sum of absolute errors and sum of normalized error confirmed Redlich–Peterson and Freundlich isotherms, respectively, as the best linear and nonlinear descriptive models. Gibb’s free energy and enthalpy change of −1976.89 and \(+\)105.505 KJ/mol, respectively, indicated spontaneous and endothermic process. After four regenerations cycles, PTA showed over 80% removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a_{\mathrm{R}}\) :

Redlich–Peterson isotherm constant (1/mg)

ARE:

Sum average relative error

\(A_{\mathrm{T}}\) :

Tempkin isotherm equilibrium binding constant (L/g)

\(b_{\mathrm{T}}\) :

Tempkin isotherm constant

\(C_{\mathrm{e}}\) :

Equilibrium concentration (mg/L)

\(C_{\mathrm{o}}\) :

Adsorbate initial concentration (mg/L)

EABS:

Sum of absolute errors

ERRSQ:

Sum of the squares of error

g :

Redlich–Peterson isotherm exponent

HYBRID:

Hybrid fractional error function

\(K_{\mathrm{D}}\) :

Hill constant

\(K_{\mathrm{F}}\) :

Freundlich isotherm constant (mg/g) (\(\hbox {dm}^{3}/\hbox {g}\))

\(K_{\mathrm{L}}\) :

Langmuir isotherm constant (L/mg)

\(K_{\mathrm{R}}\) :

Redlich–Peterson isotherm constant (L/g)

MPSD:

Marquardt’s percent standard deviation

n :

Adsorption intensity

\(n_{\mathrm{H}}\) :

Hill cooperativity coefficient of the binding interaction

p :

Number of isotherm parameter

\(q_{\mathrm{e}}\) :

Amount of adsorbate in the adsorbent at equilibrium(mg/g)

\(q_{\mathrm{e},\mathrm{calc}}\) :

Calculated adsorbate concentration at equilibrium (mg/g)

\(q_{\mathrm{e},\mathrm{Isotherm}}\) :

Measured adsorbate concentration at equilibrium (mg/g)

\(q_{\mathrm{sH}}\) :

Hill isotherm maximum uptake saturation (mg/L)

R :

Universal gas constant (8.314 J/mol K)

\(R^{2}\) :

Correlation coefficient

\(R_{\mathrm{L}}\) :

Separation factor

T :

Temperature (K)

\(\Delta \hbox {G}\) :

Gibbs energy change (KJ/mol)

\(\Delta \hbox {H}\) :

Enthalpy change (KJ/mol)

\(\Delta \hbox {S}\) :

Entropy change (J/mol K)

References

  1. Genlin, Z.; Lijuan, Y.; Hiu, D.; Ping, S.: Dye adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J. Environ. Sci. 26, 1203–1211 (2014)

    Article  Google Scholar 

  2. Xu, F.; Yu, J.M.; Tesso, T.; Dowell, F.; Wang, D.H.: Qualitative and quantitative analysis of ligno-cellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013)

    Article  Google Scholar 

  3. Monash, P.; Pugazhenthi, G.: Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15(4), 390–405 (2009)

    Article  Google Scholar 

  4. Gong, W.J.; McKim, K.S.; Hawley, R.S.: Pairing, synapsis and DSB formation in a balancer heterozygote. PLoS Genet. 1(5), 67 (2005)

    Article  Google Scholar 

  5. Muthuraman, G.; Mohamed, M.: Removal of anionic dye from aqueous solution using a cationic carrier. Int. J. Ind. Chem. 4(1), 2–7 (2013)

    Article  Google Scholar 

  6. Malakootian, M.; Fatehizadeh, A.: Color removal from water by coagulation/caustic soda and lime. IJEHSE 7(3), 267–272 (2010)

    Google Scholar 

  7. Yan, H.; Zhang, W.; Kan, X.; Dong, L.; Jiang, Z.; Li, H.: Sorption of methylene blue by carboxy-methyl cellulose and reuse process in a secondary sorption. Colloids Surf. A Physicochem. Eng. Asp. 380(1–3), 143–151 (2011)

    Article  Google Scholar 

  8. Menkiti, M.C.; Ani, J.U.; Onukwuli, O.D.: Coagulation-flocculation performance of snail shell biomass for waste water purification. New York Sci. J. 4(2), 81–90 (2011)

    Google Scholar 

  9. Menkiti, M.C.; Ejimofor, M.I.; Ezemagu, I.G.; Uddameri, V.: Turbid-metric approach on the study of the adsorptive component of paint effluent coagulation using snail shell extract. Arab J. Sci. Eng. 41, 2527 (2016). doi:10.1007/s13369-015-2013-2

    Article  Google Scholar 

  10. Al-Othman, Z.A.; Ali, R.; Naushad, M.: Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 184, 238–247 (2012)

    Article  Google Scholar 

  11. Yang, R.; Li, H.J.; Huang, M.; Yang, H.; Li, A.M.: A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016)

    Article  Google Scholar 

  12. Giri, A.K.; Patel, R.; Mandal, S.: Removal of Cr (VI) from aqueous solution by eichhornia crassipes root biomass-derived activated carbon. Chem. Eng. J. 34, 185–186 (2012)

    Google Scholar 

  13. Nethaji, S.; Sivasaoyyy, A.; Mandal, S.: Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr (VI). Bioresour. Technol. 134, 94–100 (2013)

    Article  Google Scholar 

  14. Saha, B.; Orvig, C.: Adsorbent for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254, 2959–2972 (2010)

    Article  Google Scholar 

  15. Albadarin, A.B.; Mangwandi, C.; Al-Muhtaseb, A.A.H.; Walker, G.M.; Allen, S.J.; Ahmad, M.N.M.: Kinetics and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 179, 193–202 (2012)

    Article  Google Scholar 

  16. Wa Mulange, D.M.; Garbers-Craig, A.M.: Stabilization of Cr (VI) from fine ferrochrome dust using exfoliated vermiculite. J. Hazard. Mater. 12, 223–224 (2012)

    Google Scholar 

  17. Nui, L.; Deng, S.B.; Yu, G.; Huang, J.: Efficient removal of Cu (II), Pb (II), Cr (VI) and As (V) from an aqueous solution using an aminated resin prepared from surface-initiated atom transfer radical polymerization. Chem. Eng. J. 165, 751–757 (2010)

    Article  Google Scholar 

  18. Samani, M.R.; Borghei, S.M.; Olad, A.; Chaichi, M.J.: Removal of chromium from aqueous solution using polyaniline–polyethylene glycol composite. J. Hazard. Mater. 184, 248–254 (2010)

    Article  Google Scholar 

  19. Ngah, W.S.W.; Teong, L.C.; Hanafiah, M.A.K.M.: Adsorption of dye and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83, 1446–1456 (2011)

    Article  Google Scholar 

  20. Yan, H.; Yang, H.; Li, A.M.; Cheng, R.S.: pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chem. Eng. J. 284, 1397–1405 (2016)

    Article  Google Scholar 

  21. Theivarasu, C.; Mylsamy, S.; Sivakumar, N.: Adsorptive removal of crystal violet dye using agricultural waste cocoa (Theobroma cacao) shell. Res. J. Chem. Sci. 1(7), 38–45 (2011)

    Google Scholar 

  22. Akinola, L.K.; Umar, A.M.: Adsorption of crystal violet onto adsorbents derived from agricultural wastes: kinetic and equilibrium studies. J. Appl. Sci. Environ. Manag. 19(2), 279–288 (2015)

    Google Scholar 

  23. Nidheesh, V.P.; Rajan, G.; Sreekrishnaperumal, T.R.; Tangappan, S.A.: Kinetic analysis of crystal violet adsorption onto bottom ash. Turk. J. Eng. Environ. Sci. 36, 249–262 (2012)

    Google Scholar 

  24. Qui, J.; Qui, F.; Rong, X.; Yan, J.; Zhao, H.; Yang, D.: Adsorption behavior of CV from aqueous solution with chitosan–graphite oxide modified polyurethane as an adsorbent. J. Appl. Polym. Sci. 132, 41828 (2015)

    Google Scholar 

  25. Dotto, G.L.; Pinto, L.A.A.: Adsorption of food dye acid blue 9 and food yellow 3 onto Chitosan: stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 187, 164–170 (2011)

    Article  Google Scholar 

  26. Li, K.; Li, P.; Cai, J.; Xiao, S.; Yang, H.; Li, A.: Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154, 310–318 (2016)

    Article  Google Scholar 

  27. Tazrouti, N.; Amrani, M.: Chromium (VI) adsorption onto activated sulfate ligno-cellulose. Water Pract. Technol. 4, 1–13 (2009)

    Article  Google Scholar 

  28. Huber, G.H.; Iborra, S.; Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  Google Scholar 

  29. Hamelinck, C.N.; Hooijolonk, G.; Faaij, A.P.C.: Ethanol from ligno-cellulosic biomass: techno-economic performance in short. Middle Long-term Biomass Bioenergy 28, 384–410 (2005)

    Article  Google Scholar 

  30. Mansour, M.S.; Ossman, M.E.; Farag, H.A.: Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination 272, 301–305 (2011)

    Article  Google Scholar 

  31. Zhigang, J.; Ziyu, L.; Tao, N.; Shengbiao, L.: Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J. Mol. Liq. 229, 285–292 (2017). doi:10.1016/j.molliq.2016.12.059

    Article  Google Scholar 

  32. Yinliang, L.; Miao, W.; Bo, W.; Yuying, W.; Mingguo, M.; Xueming, Z.: Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustain. Chem. Eng. 4(10), 5523–5532 (2016). doi:10.1021/acssuschemeng.6b01244

    Article  Google Scholar 

  33. Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Puchana-Rosero, C.R.; Saucier, C.; Umpierres, C.S.; Vaghetti, C.P.; Da Silva, L.G.; Ruggiero, R.: Adsorption of procion blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese. J. Hazard. Mater. 268, 43–50 (2014)

    Article  Google Scholar 

  34. Altinisik, A.; Gur, E.; Seki, Y.: A natural sorbent, luffa cylindrical for the removal of model basic dye. J. Hazard. Mater. 179, 658–664 (2010)

    Article  Google Scholar 

  35. Zhou, Y.; Zhang, M.; Wang, X.; Nui, J.: Removal of crystal violet dye by novel cellulose based adsorbent: comparism with native cellulose. Ind. Eng. Chem. Res. 53(13), 5498–5506 (2014)

    Article  Google Scholar 

  36. Kumar, K.V.; Sivanesan, S.: Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and nonlinear regression methods. J. Hazard. Mater. 136, 721–726 (2006)

    Article  Google Scholar 

  37. Hong, S.; Wen, C.; He, J.; Gan, F.; Ho, Y.S.: Adsorption thermodynamics of methylene blue onto bentonite. J. Hazard. Mater. 167(1–3), 630–633 (2009)

    Article  Google Scholar 

  38. Tunali, S.; Akar, T.: Zn(II) biosorption properties of botrytis cinerea biomass. J. Hazard. Mater. 131(1–3), 137–145 (2006)

    Article  Google Scholar 

  39. Ho, Y.S.: Selection of Optimum Isotherm. Carbon 10, 2115–2116 (2004)

    Article  Google Scholar 

  40. Ho, Y.S.; Chiu, W.T.; Wang, C.C.: Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 96, 1285–1291 (2005)

    Article  Google Scholar 

  41. Kumar, K.V.: Optimum sorption isotherm by linear and nonlinear methods for malachite green onto lemon peel. Dyes Pigments 74, 595–597 (2007)

    Article  Google Scholar 

  42. Hossain, M.A.; Al-Hassan, M.T.: Kinetic and thermodynamic studies of the adsorption of crystal violet onto used black tea leaves, orbital: the electronic. J. Chem. 1(2), 23–25 (2013)

    Google Scholar 

  43. Sears, G.W.: Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal. Chem. 28(12), 1981–1983 (1956). doi:10.1021/ac60120a048

    Article  Google Scholar 

  44. Itodo, A.U.; Itodo, H.U.: Sorption energies estimation using dubinin–radushkevich and temkin adsorption isotherms. Life Sci. J. 7, 31–39 (2010)

    Google Scholar 

  45. Stuart, B.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Hoboken (2004). (ISBNs: 0-470-85427-8 (HB); 0-470-85428-6 (PB))

    Book  Google Scholar 

  46. Günter, G.; David, S.M.: Handbook of Spectroscopy, 2nd edn. Wiley, Hoboken (2014). doi:10.1002/9783527654703. (ISBN: 9783527321506)

    Google Scholar 

  47. Shen, Q.; Zhang, T.; Zhu, M.F.: A comparison of the surface properties of ligno-cellulose and sulfonated ligno-celluloses by ftir spectroscopy and wicking technique. Colloid Surf. A 320, 57–60 (2008)

    Article  Google Scholar 

  48. Zhoa, X.T.; Zeng, T.; Hu, Z.J.; Gao, H.W.; Zou, C.Y.: Modeling and mechanism of the adsorption of proton onto natural bamboo sawdust. Carbohydr. Polym. 87, 1199–1205 (2012)

    Article  Google Scholar 

  49. Guerra, A.; Filpponen, I.; Lucia, L.; Argyropoulos, D.: Comparative evaluation of three ligno-cellulose isolation protocols for various wood species. J. Agric. Food Chem. 54, 9696–9705 (2006)

    Article  Google Scholar 

  50. Goswami, S.; Ghosh, U.C.: Studies on the adsorption behavior of Cr (VI) onto synthetic hydrous stanniz oxide. Water. S. A. 31(4), 597–602 (2006)

    Google Scholar 

  51. Bello, O.S.; Adelaide, O.M.; Hammed, M.A.; Popoola, O.A.M.: Kinetic and equilibrium studies of methylene blue removal from aqueous solution by adsorption on treated sawdust. Macedonian J. Chem. Chem. Eng. 29, 77–85 (2010)

    Google Scholar 

  52. Hema, M.; Arivoli, S.: Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low cost carbon. Int. J. Phys. Sci. 21, 10–17 (2007)

    Google Scholar 

  53. Gupta, V.K.; Mittal, A.; Malviya, A.; Mittal, J.: Adsorption of carmoisine a from wastewater using waste materials—bottom ash and de-oiled soya. J. Colloid Interface Sci. 335, 2433 (2009)

    Article  Google Scholar 

  54. Khenifi, A.; Bouberka, Z.; Sekrane, F.; Kameche, M.; Derriche, Z.: Adsorption study of an industrial dye by an organic acid. Adsorption 13(2), 149–158 (2007)

    Article  Google Scholar 

  55. Hashem, M.A.: Adsorption of lead ions from aqueous solution by okra waste. Int. J. Phys. Sci. 2(7), 174–184 (2007)

    Google Scholar 

  56. Larous, S.; Meniai, H.; Bencheikh, M.; Lehocine, M.: Experimental study of the removal of copper from aqueous solution by adsorption using sawdust. Desalination 185, 483–490 (2005)

    Article  Google Scholar 

  57. Pérez-Marín, A.B.; Meseguer Zapata, V.; Ortuno, J.F.; Aguilar, M.; Sáez, J.; Llorens, M.: Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater. B 139, 122–131 (2007)

    Article  Google Scholar 

  58. Adamson, A.W.; Gast, A.P.: Physical Chemistry of Surfaces, 6th edn. Wiley-Interscience, New York (1997)

    Google Scholar 

  59. Haghseresht, F.; Lu, G.: Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 12, 1100–1107 (1998)

    Article  Google Scholar 

  60. Aharoni, C.; Ungarish, M.: Kinetics of activated chemisorption. Part 2. Theoretical models. J. Chem. Soc. Faraday Trans. 73, 456–464 (1977)

    Article  Google Scholar 

  61. Khan, A.; Al-Waheab, I.; Al-Haddad, A.: Generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. Environ. Technol. 17(1), 13–23 (1996)

    Article  Google Scholar 

  62. Ho, Y.: Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol. J. Environ. Stud. 15(1), 81–86 (2006)

    Google Scholar 

  63. Ringot, D.; Lerzy, B.; Chaplain, K.; Bonhoure, J.P.; Auclair, E.; Larondelle, Y.: In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresour. Technol. 98, 1812–1821 (2007)

    Article  Google Scholar 

  64. Mardia, K.V.; Kent, J.T.; Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

  65. Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Polne, J.B.; Frith, C.D.; Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapp. 2(4), 189–210 (1995). doi:10.1002/hbm.460020402

    Article  Google Scholar 

  66. Ronald, C.: Plane Answers to Complex Questions: The Theory of Linear Models, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  67. Strutz, T.: Data fitting and Uncertainty (A Practical Introduction to Weighted Least Squares and Beyond), 2nd edn. Springer, New York (2016)

    Google Scholar 

  68. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  69. McKay, G.; Allen, S.J.; McConvey, I.F.: The adsorption of dyes from solution: equilibrium and column studies. Water Air Soil Pollut. 21, 127–129 (1984)

    Article  Google Scholar 

  70. Mckay, G.; Ho, Y.S.; Porter, J.F.: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil pollut. 141, 1–33 (2002)

    Article  Google Scholar 

  71. Redlich, O.; Peterson, D.L.: A useful adsorption isotherm. J. Phys. Chem. 63, 1024–1026 (1959)

    Article  Google Scholar 

  72. Seidel, A.; Gelbin, D.: Applying the ideal adsorbed solution theory to multi-component adsorption equilibria of dissolved organic components on activated carbon. Chem. Eng. Sci. 43, 79–89 (1988)

    Article  Google Scholar 

  73. Seidel-Morgenstern, A.; Guichon, G.: Modeling of the competitive isotherms and the chromatographic separation of two enantiomers. Chem. Eng. Sci. 48, 2787–2797 (1993)

    Article  Google Scholar 

  74. Malek, A.; Farooq, S.: Comparison of isotherm models for hydrocarbon adsorption on activated carbon. A. I. Ch. E. J. 42, 431–441 (1996)

    Article  Google Scholar 

  75. Khan, A.R.; Al-Wahebam, I.R.; Al-Haddad, A.: A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. Environ. Technol. 17, 13–23 (1996)

    Article  Google Scholar 

  76. Ngo, H.H.; Hossain, M.A.; Guo, W.: Introductory of microsoft excel solver function-spreadsheet method for isotherm and kinetics modeling of metals biosorption in water and wastewater. J. Water Sustain. 3(4), 223–237 (2013)

    Google Scholar 

  77. Bowen, W.P.; Jerman, J.C.: Nonlinear regression using spreadsheets. Trends Pharmacol. Sci. 16(12), 413–417 (1995)

    Article  Google Scholar 

  78. Freundlich, H.M.F.: Adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)

    Google Scholar 

  79. Hadi, M.; Samarghandi, M.R.; McKay, C.: Equilibrium two parameter isotherms of acid dyes sorption by activated carbons: study of residual errors. Chem. Eng. J. 160, 408–416 (2010)

    Article  Google Scholar 

  80. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  81. Temkin, M.I.: Adsorption equilibrium and the kinetics of processes on non-homogeneous surfaces and in the interaction between adsorbed molecules. Zh. Fiz. Chim. 15, 296–332 (1941)

    Google Scholar 

  82. Vargas, M.M.; Almeida, V.C.; Andre, L.C.; Martins, A.C.; Morqes, J.C.; Garcia, E.E.; Guaze, G.F.; Costa, W.F.: Kinetics and equilibrium studies: adsorption of food dyes acid yellow 6, acid yellow 23 and acid red 18 on activated carbon from flambouyant pods. Chem. Eng. J. 32(181–182), 243–250 (2012)

    Article  Google Scholar 

  83. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  Google Scholar 

  84. Hill, A.V.: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, 4–7 (1910)

    Google Scholar 

  85. Yikia, Y.; Bo, X.; Yijiu, J.; Qian, J.: Preparation and adsorption properties of diethylenetriamine-modified chitosan beads for acid dyes. J. Appl. Polym. Sci. 130, 4090–4098 (2013)

    Google Scholar 

  86. Patel, R.; Suresh, S.: Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour. Technol. 99, 51–58 (2008)

    Article  Google Scholar 

  87. Sun, P.; Hui, C.; Khan, R.A.; Du, J.; Zhang, Q.; Zhao, Y.: Efficient removal of crystal violet using \(\text{Fe}_{3}\text{O}_{4}\)-coated biochar: the role of the \(\text{Fe}_{3}\text{O}_{4}\) nanoparticles and modeling study their adsorption behavior. Sci. Rep. 5, 12638 (2015). doi:10.1038/srep12638

    Article  Google Scholar 

  88. Wang, X.S.; Liu, X.; Wen, L.; Zhou, Y.; Jiang, Y.; Li, Z.: Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Sep. Sci. Technol. 43(14), 3712–3731 (2008)

    Article  Google Scholar 

  89. Bazzo, A.; Adebayo, M.A.; Dias, S.L.P.; Lima, E.C.; Vaghetti, J.C.P.; de Oliveira, E.R.; Leite, A.J.B.; Pavan, F.A.: Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions. Desalination Water Treat. 57(34), 15873–15888 (2016). doi:10.1080/19443994.2015.1074621

    Article  Google Scholar 

  90. Nandi, B.K.; Goswami, A.; Das, A.K.; Mondal, B.; Purkait, M.K.: Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep. Sci. Technol. 43(6), 1382–1403 (2008). doi:10.1080/01496390701885331

  91. Pavan, A.F.; Camacho, E.S.; Lima, E.C.; Dotto, G.L.; Branco, V.T.A.; Dias, S.L.P.: Formosa papaya seed powder (FPSP): preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. J. Environ. Chem. Eng. 2(1), 230–238 (2014). doi:10.1016/j.jece.2013.12.017

    Article  Google Scholar 

  92. Nandhakumar, V.; Rajathi, A.; Ramesh, K.; Elavarasan, A.: Isotherm models for the adsorption of crystal violet dye onto zinc chloride activated carbon. Int. J. Nano Corr. Sci. Eng. 2(5), 375–391 (2015)

    Google Scholar 

  93. Patila, S.; Renukdasb, S.; Patel, N.J.: Adsorption of crystal violet dye onto jack fruit plant powder. Chem. Bio. Phy. Sci. Sec. 2, 2158 (2012)

    Google Scholar 

  94. Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.H.: Metabolically inactive trichoderma harzianum mediated adsorption of synthetic dyes: equilibrium and kinetic studies. J. Taiwan Inst. Chem. Eng. 40(4), 394–402 (2009)

    Article  Google Scholar 

  95. Kumar, K.V.; Kumaran, A.: Removal of methylene blue by mango seed kernel powder. Biochem. Eng. J. 27, 83 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Menkiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menkiti, M.C., Aniagor, C.O. Parametric Studies on Descriptive Isotherms for the Uptake of Crystal Violet Dye from Aqueous Solution onto Lignin-Rich Adsorbent. Arab J Sci Eng 43, 2375–2392 (2018). https://doi.org/10.1007/s13369-017-2789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2789-3

Keywords

Navigation