Skip to main content
Log in

Predicting the Porosity of Natural Fractures in Tight Reservoirs

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Predicting the fracture porosity of tight fracture reservoirs represents a difficult problem for log interpretation, although studying conventional log responses of tight fracture reservoirs provides helpful insights. Comparisons and analyses of the log response characteristics of the natural fracture zone of a tight reservoir are performed, and the results indicate that the acoustic (AC) and density (DEN) data are highly sensitive to fractures. First, the log response of the AC and DEN data are sensitive to tight fracture reservoirs, and differences in the AC and DEN log responses are obvious. Second, based on these differences, a model for calculating the fracture porosity is constructed, and an improved Willie difference method for the AC and DEN responses is proposed to calculate the fracture porosity. Finally, we apply the methodology to a case study of a tight reservoir in the Sichuan Basin, China, and then calculate the AC–DEN correlation coefficient and fracture porosity. The calculated fracture porosity is consistent with the fracture porosity from the full borehole micro-resistivity imaging results and core porosity. The results indicate that the method is applicable for predicting the porosity of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karl-Heinz, F.; James, C.M.: Fracture shale gas reservoirs performance study—an offset well interference field test. J. Pet. Technol. 21, 291–300 (1984). doi:10.2118/11224-PA

    Google Scholar 

  2. Curtis, J.B.: Fractured shale-gas systems. AAPG Bull. 86, 1921–1938 (2002). doi:10.1306/61EEDDBE-173E-11D7-8645000102C1865D

    Google Scholar 

  3. Gale, J.F.W.; Laubach, S.E.; Olson, J.E.; Eichhubl, P.; Fall, A.: Natural fractures in shale: a review and new observations. AAPG Bull. 98, 2165–2216 (2014). doi:10.1306/08121413151

    Article  Google Scholar 

  4. Laubach, S.E.: Practical approaches to identifying sealed and open fractures. AAPG Bull. 87, 561–579 (2003). doi:10.1306/11060201106

    Article  Google Scholar 

  5. Sibbit, A.M.; Faivre, O.: The dual laterolog response in fractured rocks. In: SPWLA 26th Annual Logging Symposium, Dallas, Texas (1985). http://dx.doi.org/SPWLA-1985-T.

  6. Philippe, A.P.; Roger, N.A.: In situ measurements of electrical resistivity, formation anisotropy, and tectonic context. In: SPWLA 31st Annual Logging Symposium, Lafayette, Louisiana (1990). http://dx.doi.org/SPWLA-1990-M.

  7. Li, S.J.; Xiao, C.W.; Wang, H.M.: Mathematical model of dual laterolog response to fracture and quantitative interpretation of fracture porosity. ACTA Geophys. Sin. 39, 845–852 (1996). (in Chinese)

    Google Scholar 

  8. Li, S.J.; Wang, H.M.; Xiao, C.W.: Quantitative interpretation of fracture porosity in carbonates. Well Logging Technol. 21, 205–214 (1997). (in Chinese)

    Google Scholar 

  9. Li, S.J.: Inverting fracture porosity and dip of limestone fractured reservoir using 3D FEM. Well Logging Technol. 22, 412–415 (1998). (in Chinese)

    Google Scholar 

  10. Deng, S.G.; Fan, Y.R.; Zhou, C.C.: Fast computing methods for dual laterolog response of fracture of rigid sandstone reservoir. J. Univ. Pet. 29, 31–34 (2005). doi:10.3321/j.issn:1000-5870.2005.03.007

    Google Scholar 

  11. Deng, S.G.; Wang, X.C.; Zou, D.J.; Fan, Y.R.; Yang, Z.: Interpreting dual laterolog fracture data in fractured carbonate formation. J. Earth Sci. 17, 168–172 (2006). doi:10.1016/S1002-0705(06)60024-1

    Google Scholar 

  12. Zhu, D. W.: Developmental characteristics, major regulating factors and distribution prediction of fractures in shale of upper Triassic Yangchang formation in Yangchang oil-gas field: M.S. Thesis, China University of Geosciences (2013) (in Chinese)

  13. Xu, J.L.; Zhang, B.Y.; Qin, Y.X.; Cao, G.W.; Zhang, H.: Method for calculating the fracture porosity of tight-fracture reservoirs. Geophysics 81, IM57–IM70 (2016). doi:10.1190/GEO2015-0434.1

    Article  Google Scholar 

  14. Zeng, L.B.; Qi, J.F.; Wang, Y.G.: Origin type of tectonic fractures and geological conditions in low-permeability reservoirs. Acta Geol. Sin. 28, 52–56 (2007). doi:10.3321/j.issn:0253-2697.2007.04.010. (in Chinese)

    Google Scholar 

  15. Wang, C. M.; Huang, S. J.; Sun, Z. L.; Hu, Z. W.; Huang, K. K.; Dong, H. P.: Characteristics and origin of fractures in tight sandstone reservoirs of the Xujiahe Formation in the western Sichuan depression: A case study in the Xiaoquan–Xinchang–Hexingchang area. Nat. Gas (Industry) (2011). doi:10.3787/j.issn.1000-0976.2011.08.010

  16. Ma, X.; Hao, R.; Lai, X.; Zhang, Y.; Ma, Z.; He, M.; Xiao, Y.; Bi, M.; Ma, X.: Field test of volume fracturing for horizontal wells in Sulige tight sandstone gas reservoirs, NW China. Pet. Explor. Dev. 41, 810–816 (2014). doi:10.1016/S1876-3804(14)60098-7

    Article  Google Scholar 

  17. Liu, X.G.; Zhang, X.: Methods of estimating fracture parameters by logging. Nat. Gas Ind. 23, 31–35 (2003). doi:10.3321/j.issn:1000-0976.2003.04.009. (in Chinese)

    Google Scholar 

  18. Zhang, J.Y.; Sun, J.M.: Log evaluation on shale hydrocarbon reservoir. Well Logging Technol. 36, 146–153 (2012). doi:10.3969/j.issn.1004-1338.2012.02.008. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingling Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, B. & Xu, L. Predicting the Porosity of Natural Fractures in Tight Reservoirs. Arab J Sci Eng 43, 311–319 (2018). https://doi.org/10.1007/s13369-017-2780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2780-z

Keywords

Navigation