Skip to main content

Advertisement

Log in

An Analytical and Experimental Approach to Diagnose Unbalanced Voltage Supply

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Induction motors are the workhorse component of many industries and are frequently integrated into equipment. Many industries faced one of the serious problems regarding its maintenance issues. According to Neale and Wowk, the maintenance expenditure can be up to 80% of the total cost of motor. According to the reliable study by Electric Power Research Institute, the inter-turn short-circuit faults approximately contribute 37% of the induction motor failures. In the literature, most of the techniques are reviewed that are used to diagnose the fault in stator winding and it is found that majority of motor failures are due to insulation breakdown. It is found the unbalanced voltage is one of the major sources of insulation failure. And most of the exiting techniques to diagnose this fault are off-line or sensor bases. In this work, noninvasive online method is proposed; first of all, an analytical expression is derived for the conductor segments in the stator winding that are responsible for the generation of magnetomotive force (MMF). Therefore, stator windings are partitioned down into two set of segments (slot conductors and end conductors). The slot conductors are of major interest because their axial arrangement in the slots provides a room to establish MMF in order to generate a torque. Further, in this paper, an expression for MMF is derived through winding function approach. It was found that besides the fundamental MMF, there exist waves with a different number of poles. This MMF will induce a voltage in a stator winding through rotor side. In addition, the effect of MMF is considered on the current spectrum of induction motor because the knowledge of current spectrum under faulty regimes is the point of interest to diagnose a motor fault in a noninvasive way. Moreover, a new series of rotor harmonic frequency component are introduced to diagnose unbalanced voltage supply. Finally, the proposed analytical models and new series of rotor harmonic sheds a light on stator current components to diagnose and distinguish between balanced and unbalanced voltage supply in a real-time scenario. To validate the proposed method, two experimental hardware setups were designed comprising of a three-phase induction motor, two-axis magnetic field sensor, 8821-2A variable power source, current transformer, FLUKE 435 II series power quality energy analyzer, and Pasco interface for data acquisition. The appearance and significant increase in the magnitude of a new series of harmonics under unbalanced voltage are the indication of unbalanced voltage supply. Thus, the experimental data clearly justify and validate the proposed analytical model with the results of hardware setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirat, Y.; Benbouzid, M.E.H.; Al-Ahmar, E.; Bensaker, B.; Turri, S.: A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renew. Sustain. Energy Rev. 13, 2629–2636 (2009)

    Article  Google Scholar 

  2. Widodo, A.; Yang, B.-S.: Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 21, 2560–2574 (2007)

    Article  Google Scholar 

  3. Zhang, P.; Du, Y.; Habetler, T.G.; Lu, B.: A survey of condition monitoring and protection methods for medium-voltage induction motors. Ind. Appl. IEEE Trans. 47, 34–46 (2011)

    Article  Google Scholar 

  4. Ordaz-Moreno, A.; de Jesus Romero-Troncoso, R.; Vite-Frias, J.A.; Rivera-Gillen, J.R.; Garcia-Perez, A.: Automatic online diagnosis algorithm for broken-bar detection on induction motors based on discrete wavelet transform for FPGA implementation. Ind. Electron. IEEE Trans. 55, 2193–2202 (2008)

    Article  Google Scholar 

  5. Mohamed, A.S.; Azazy, H.Z.; Zein El Din, A.S.: Open-circuit fault diagnosis of three-phase induction motor drive systems. J. Electr. Eng. 13, 60–68 (2013)

    Google Scholar 

  6. Abdollahi, R.; Farhangi, R.; Yarahmadi, A.: Emotional learning based intelligent controllers for rotor flux oriented control of induction motor. J. Electr. Eng. 65, 228–234 (2014)

    Google Scholar 

  7. Neale, N.: Condition Monitoring Methods and Their Interpretation. A Guide to the Condition Monitoring of Machines. Department of trade and industry press, London (1980)

    Google Scholar 

  8. Mehala, N.: Condition Monitoring and Fault Diagnosis of Induction Motor Using Motor Current Signature Analysis. National Institute of Technology Kurukshetra, India (2010)

    Google Scholar 

  9. Gao, L.; Fletcher, J.E.; Zheng, L.: Low-speed control improvements for a two-level five-phase inverter-fed induction machine using classic direct torque control. Ind. Electron. IEEE Trans. 58, 2744–2754 (2011)

    Article  Google Scholar 

  10. Abdel-Khalik, A.; Masoud, M.; Williams, B.: Vector controlled multiphase induction machine: harmonic injection using optimized constant gains. Electr. Power Syst. Res. 89, 116–128 (2012)

    Article  Google Scholar 

  11. Mohammadpour, A.; Sadeghi, S.; Parsa, L.: Fault-tolerant control of five-phase PM machines with pentagon connection of stator windings under open-circuit faults. In: Applied Power Electronics Conference and Exposition (APEC). Twenty-Seventh Annual IEEE, vol. 2012, pp. 1667–1672 (2012)

  12. Sadeghi, S.; Guo, L.; Toliyat, H.; Parsa, L.: Wide operational speed range of five-phase permanent magnet machines by using different stator winding configurations. Ind. Electron. IEEE Trans. 59, 2621–2631 (2012)

    Article  Google Scholar 

  13. Abdel-Khalik, A.S.; Morsy, A.S.; Ahmed, S.; Massoud, A.M.: Effect of stator winding connection on performance of five-phase induction machines. Ind. Electron. IEEE Trans. 61, 3–19 (2014)

    Article  Google Scholar 

  14. Tandon, N.; Yadava, G.; Ramakrishna, K.: A comparison of some condition monitoring techniques for the detection of defect in induction motor ball bearings. Mech Syst Signal Process. 21, 244–256 (2007)

    Article  Google Scholar 

  15. Martins, J.F.; Pires, V.F.; Pires, A.: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault. Ind. Electron. IEEE Trans. 54, 259–264 (2007)

    Article  Google Scholar 

  16. Liu, K.; Wu, L.; Lü, J.; Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Sci. China Technol. Sci. 59, 22–32 (2016)

    Article  Google Scholar 

  17. Thomson, W.T.; Fenger, M.: Current signature analysis to detect induction motor faults. Ind. Appl. Mag. IEEE 7, 26–34 (2001)

    Article  Google Scholar 

  18. Nandi, S.; Ahmed, S.; Toliyat, H.A.: Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages. Energy Convers. IEEE Trans. 16, 253–260 (2001)

    Article  Google Scholar 

  19. Tan, S.; Lü, J.; Lin, Z.: Emerging behavioral consensus of evolutionary dynamics on complex networks. SIAM J. Control Optim. 54, 3258–3272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; et al.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, Y.; Wu, X.; Lu, J.-A.; Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits Syst. II Express Briefs 63, 206–210 (2016)

    Article  Google Scholar 

  22. Ojaghi, M.; Sabouri, M.; Faiz, J.: Diagnosis methods for stator winding faults in three-phase squirrel-cage induction motors. Int. Trans. Electr. Energy Syst. 24, 891–912 (2014)

    Article  Google Scholar 

  23. Lamim, P.; Pederiva, R.; and Brito, J.: Detection of stator winding faults in induction machines using an internal flux sensor. In: Diagnostics for Electric Machines, Power Electronics and Drives, 2007. SDEMPED 2007. IEEE International Symposium on, pp. 432–437 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aman Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.A., Nor, N.M., Ibrahim, T. et al. An Analytical and Experimental Approach to Diagnose Unbalanced Voltage Supply. Arab J Sci Eng 43, 2735–2746 (2018). https://doi.org/10.1007/s13369-017-2769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2769-7

Keywords

Navigation