Skip to main content

Eco-Friendly Synthesis of Aluminosilicate Bromo Sodalite from Waste Coal Fly Ash for the Removal of Copper and Methylene Blue Dye

Abstract

The synthesis of sodalite from fly ash seems to be one of the most promising alternatives as it has emphasis on value addition to the waste material. In view of this problem, this study investigated a working procedure for determining the degree of reaction of fly ash subjected to alkali activation at mild temperature, during the synthesis of bromo sodalite, \(\hbox {Na}_{8}[\hbox {AlSiO}_{4}]_{6}\hbox {Br}_{2}\). Obtained sodalite product was analyzed for their composition and physicochemical properties by X-ray diffraction, Fourier transform infrared spectroscopic analysis, inductively coupled plasma, Brunauer–Emmett–Teller surface area analysis, thermogravimetric analysis and scanning electron microscope. The crystal structures show cubic symmetry in a space group \(\hbox {P}{\overline{4}} 3\hbox {n}\). The unit cell parameter \(a = 8.930\) Å, and the corresponding Al–O–Si angle is found to be \(140.5624^{\circ }\). The adsorption behavior of synthesized bromo sodalite has been studied in order to determine its applicability for the adsorption of the copper ion and methylene blue dye from their aqueous solutions. Factors influencing the adsorption process including contact time, sodalite concentration variation, copper ion and dye concentration variation were studied for adsorption of copper and methylene blue dye. Copper is removed due to two processes, viz adsorption and ion exchange, whereas methylene blue is removed due to only adsorption. The maximum adsorption capacity of synthesized sodalite was found to be 52.63 mg/g for copper ion removal and 45.46 mg/g for methylene blue dye removal. Thermodynamic parameters like Gibbs free energy (\(\Delta G^{\circ })\), entropy change (\(\Delta S\)) and enthalpy change (\(\Delta H\)) were calculated. Present adsorbent showed much better adsorption capacity for both copper ion and methylene blue as compare to reported low-cost adsorbents.

This is a preview of subscription content, access via your institution.

References

  1. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  Google Scholar 

  2. Pellera, F.M.; Giannis, A.; Kalderis, D.: Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J. Environ. Manag. 96, 35–42 (2012)

    Article  Google Scholar 

  3. Nadaroglu, H.; Kalkan, M.; Demir, N.: Removal of copper from aqueous solution using red mud. Desalination 251, 90–95 (2010)

    Article  Google Scholar 

  4. Wang, C.; Li, J.; Sun, X.: Evaluation of zeolites synthesized from coal fly ash as a potential adsorbent for wastewater containing heavy metals. J. Environ. Sci. 21, 127–136 (2009)

    Article  Google Scholar 

  5. Baker, H.M.; Massadeh, A.M.: Natural Jordanian Zeolite: Removal of Heavy metal ions from water samples using column and batch methods. Environ. Monit. Assess 157, 319–330 (2009)

    Article  Google Scholar 

  6. Argun, M.E.; Dursun, E.; Ozdemir, C.; et al.: Heavy metal adsorption by modified Oak Sawdust: thermodynamics and kinetics. J. Hazard Mater. 141, 77–85 (2007)

    Article  Google Scholar 

  7. Bao, W.; Liu, L.; Zou, H.; et al.: Removal of \(\text{Cu}^{2+}\) from Aqueous Solutions Using Na–A Zeolite from Oil Shale Ash. Chin. J. Chem. Eng. 21, 973–982 (2013)

    Google Scholar 

  8. Huang, Y.H.; Hsueh, C.L.; Cheng, H.P.; Su, L.C.; et al.: Thermodynamics and kinetics of Cu (II) onto waste iron oxide. J. Hazard Mater. 144, 406–411 (2007)

    Article  Google Scholar 

  9. Aydin, H.; Bulut, Y.; Yerlikaya, C.: Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manag. 87, 37–45 (2008)

    Article  Google Scholar 

  10. Ofomaja, A.E.: Equillibrium studies of copper ion adsorption onto palm kernel fibre. J. Environ. Manag. 91, 1491–1499 (2010)

    Article  Google Scholar 

  11. Borhade, A.V.; Kshirsagar, T.A.; Dholi, A.G.; et al.: Removal of heavy metals Cd\(^{2+}\), Pb\(^{2+}\), and Ni\(^{2+}\) from aqueous solutions using synthesized azide cancrinite, \(\text{Na}_{8}[\text{Al}\text{SiO}_{4}]_{6}(\text{N}3)_{2.4}\)(H2O)\(_{4.6}\). J. Chem. Eng. Data 60(3), 586–593 (2015)

    Article  Google Scholar 

  12. Sapawe, N.; Jalil, A.A.; Triwahyono, S.; et al.: Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem. Eng. J. 229, 388–398 (2013)

    Article  Google Scholar 

  13. Gueu, S.; Yao, B.; Adouby, K.; et al.: Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. Environ. Sci. Tech. 4(1), 11–17 (2007)

    Article  Google Scholar 

  14. Othman, Z.A.; Hashem, A.; Habila, M.: Kinetic, equilibrium and thermodynamic studies of cadmium (II) adsorption by modified agricultural wastes. Molecules 16, 10443–10456 (2011)

    Article  Google Scholar 

  15. Hiu, K.S.; Chao, C.Y.H.; Kot, S.C.: Removal of mixed metal ions in wastewater by zeolite 4A and residual product from recycled coal fly ash. J. Hazard Mater. B127, 89–101 (2005)

    Google Scholar 

  16. Babel, S.; Kurniawan, T.A.: Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard Mater. 15, 219–243 (2003)

    Article  Google Scholar 

  17. Bailey, S.E.; Olin, T.J.; Brickar, M.: A review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479 (1999)

    Article  Google Scholar 

  18. Maguire, R.J.: Occurrence and persistence of dyes in a Canadian river. Water Sci. Technol. 25, 270–277 (1992)

    Google Scholar 

  19. El-Sharakaway, E.A.; Soliman, A.Y.; Al-Amer, K.M.: Comparative study for removal of methylene blue via adsorption and photocatalytic degradation. J. Colloid Interface Sci. 310, 498–508 (2007)

    Article  Google Scholar 

  20. Martinez-Huitle, C.A.; Brillas, E.: Decontamination of wastewaters containing synthetic dyes by electrochemical methods: a general review. Appl. Catal. B 87, 105–145 (2009)

    Article  Google Scholar 

  21. Ledakowicz, S.; Solecka, M.; Zylla, R.: Biodegradation, decolorization and detoxification of textile wastewater enhanced by advanced oxidation process. J. Biotechnol. 89, 175–184 (2001)

    Article  Google Scholar 

  22. Annadurai, G.; Juang, R.S.; Lee, D.J.: Use of cellulose based wastes for adsorption of dyes from aqueous solutions. J. Hazard Mater. 92, 263–274 (2002)

    Article  Google Scholar 

  23. Bhattacharya, K.G.; Sharma, A.: Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigment 65, 51–59 (2005)

    Article  Google Scholar 

  24. Batzias, F.A.; Sidiras, D.K.: Dye adsorption by Calcium chloride treated beech sawdust in batch and fixed based system. J. Hazard Mater. 114, 167–174 (2004)

    Article  Google Scholar 

  25. Kumar, K.V.; Porkodi, K.: Relation between some two and three parameter isotherm models for the sorption of methylene blue onto lemon peel. J. Hazard Mater. 138, 633–635 (2006)

    Article  Google Scholar 

  26. Fu, Y.; Viraghavan, T.: Removal of a dye from an aqueous solutions by fungus Aspergillus Niger. Water Qual. Res. J. Can. 35, 95–111 (2000)

    Google Scholar 

  27. Kumar, K.V.; Ramamurthi, V.; Sivanesan, S.: Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interface Sci. 284, 14–21 (2005)

    Article  Google Scholar 

  28. Chakraborty, S.; Dutta, B.B.: On the adsorption and diffusion of methylene blue in glass fibres. J. Colloid Interface Sci. 286, 807–811 (2005)

    Article  Google Scholar 

  29. Khattri, S.D.; Singh, M.K.: Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut. 120, 283–294 (2000)

    Article  Google Scholar 

  30. Barrer, R.; White, E.: The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates. J. Chem. Soc. 1561–1571 (1952)

  31. Amrhein, C.; Gholam,; Tai, S.: Synthesis and properties of zeolites from coal fly ash. Environ. Sci. Technol. l30, 735–742 (1996)

    Article  Google Scholar 

  32. Park, M.; Choi, C.; Lim, W.; et al.: Molten-salt method for the synthesis of zeolitic materials: I Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater. 37, 81–89 (2000)

    Article  Google Scholar 

  33. Park, M.; Choi, C.; Lim, W.; et al.: Molten-salt method for the synthesis of zeolitic materials: II characterization of zeolitic materials. Microporous Mesoporous Mater. 37, 91–98 (2000)

    Article  Google Scholar 

  34. Chareonpanich, M.; Namto, T.; Kongkachuichay, P.; et al.: Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol. 85, 1623–1634 (2004)

    Article  Google Scholar 

  35. Moriyamaa, R.; Takedab, S.; Onozakia, M.; et al.: Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution. Fuel 84, 1455–1461 (2005)

    Google Scholar 

  36. Mimura, H.; Yokota, K.; Akiba, K.; et al.: Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion. J. Nucl. Sci. Technol. 38, 766–772 (2001)

    Article  Google Scholar 

  37. Murayama, N.; Yoshida, S.; Takami, Y.; et al.: Simultaneous removal of NH\(_{4}^{+}\) and P\(\text{O}_{4}^{3-}\) in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash. Sep. Sci. Technol. 38, 113–130 (2003)

    Article  Google Scholar 

  38. Chen, J.; Kong, H.; Wu, D.; et al.: Removal of phosphate from aqueous solution by zeolite synthesized from fly ash. J. Colloid Interface Sci. 300, 491–497 (2006)

    Article  Google Scholar 

  39. Wu, D.; Zhang, B.; Li, C.; Zhang, Z.; Kong, H.: Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J. Colloid Interface Sci. 304, 300–306 (2006)

    Article  Google Scholar 

  40. Zhang, B.; Wu, D.; Wang, C.; He, S.; et al.: Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. J. Environ. Sci. 19, 540–545 (2007)

    Article  Google Scholar 

  41. Qiu, W.; Zheng, Y.: Arsenate removal from water by an alumina-modified zeolite recovered from fly ash. J. Hazard Mater. 148, 721–726 (2007)

    Article  Google Scholar 

  42. Somerset, V.; Petric, L.; Iwuoha, E.: alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of lead and mercury from wastewater. J Environ. Manag. 87, 125–131 (2008)

    Article  Google Scholar 

  43. Apiratikul, R.; Pavasant, P.: Sorption of \(\text{Cu}^{2+}\), Cd\(^{2+}\) and Pb\(^{2+}\) using modified zeolite from coal fly ash. Chem. Eng. J. 144(2), 245–258 (2008)

    Article  Google Scholar 

  44. Querol, X.; Alastuey, A.; Jose, L.; et al.: Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74, 1226–1231 (1995)

    Article  Google Scholar 

  45. Holler, H.: Untersuchungen über die bildung von analcim aus natuürlichen silikaten. Contrib. Mineral. Petrol. 27, 80–84 (1970)

    Article  Google Scholar 

  46. Lin, C.; His, H.: Resource recovery of waste fly ash: synthesis of zeolite-like materials. Environ. Sci. Technol. 29, 1109–1117 (1995)

    Article  Google Scholar 

  47. Kugbe, J.; Matsue, N.; Henmi, T.: Synthesis of Linde type A zeolite–goethite nanocomposite as an adsorbent for cationic and anionic pollutants. J. Hazard Mater. 164, 929–935 (2009)

    Article  Google Scholar 

  48. Berkgaut, V.; Singer, A.: High capacity cation exchanger by hydrothermal zeolitization of coal fly ash. Appl. Clay Sci 10, 369–378 (1996)

    Article  Google Scholar 

  49. Querol, X.; Alastuey, A.; Lopez-Soler, A.; et al.: Fast method for recycling fly ash: microwave-assisted zeolite synthesis. Environ. Sci. Technol. 31, 2527–2533 (1997)

    Article  Google Scholar 

  50. Steenbruggen, G.; Hollman, G.: The synthesis of zeolites from fly ash and the properties of the zeolite products. J. Geochem. Explor. 62, 305–309 (1998)

  51. Querol, X.; Umana, J.; Plana, F.; et al.: Synthesis of Na zeolites from fly ash in a pilot plant scale. Examples of potential environmental applications. Fuel 80, 857–865 (2001)

  52. Zhao, X.; Lu, G.; Zhu, H.: Effects of aging and seeding on the formation of zeolite Y from coal fly ash. J. Porous Mater. 7, 245–251 (1994)

    Google Scholar 

  53. Chang, H.; Shih, W.: A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Ind. Eng. Chem. Res. 37, 71–78 (1998)

    Article  Google Scholar 

  54. Borhade, A.V.; Wakchaure, S.G.: Synthesis and characterization of aluminosilicate and gallosilicate sodalites containing acetate ions. Mater. Sci. Pol. 29(2), 127–134 (2011)

    Article  Google Scholar 

  55. Shigemoto, N.; Hayashi, H.; Miyaura, K.: Selective formation of Na–X, zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 28, 4781–4786 (1993)

    Article  Google Scholar 

  56. Hollman, G.; Steenbruggen, G.; Janssen, M.: A two-step process for synthesis of zeolites from coal fly ash. Fuel 78, 1225–1230 (1999)

    Article  Google Scholar 

  57. Henmi, T.: Synthesis of hydroxy -sodalite (“zeolite”) from waste coal ash. Soil Sci. Plant Nutr. 33, 517–521 (1987)

    Article  Google Scholar 

  58. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  59. Freundlich, H.; Heller, W.: On adsorption in solution. J. Am. Chem. Soc. 61, 2228–2232 (1939)

    Article  Google Scholar 

  60. Larson, A. C.; Vondreele, R. B.: GSAS: Generalized Structure Analysis System, Report LAUR 86-748. Los Alamos National Laboratory (1986)

  61. Veit, T.; Bhul, J.C.; Hoffmann, W.: Hydrothermal synthesis, characterization and refinement of chlorate and perchlorate sodalite. Catal. Today 8, 405–413 (1991)

    Article  Google Scholar 

  62. Borhade, A.V.; Wakchaure, S.G.; Dholi, A.G.: Synthesis, Infrared and X-ray diffraction study of mixed halogen sodalites and sodalites containing silver derivatives. Ind. J. Chem. 46, 942–947 (2007)

    Google Scholar 

  63. Borhade, A.V.; Wakchaure, S.G.; Dholi, A.G.: One pot synthesis and crystal structure of aluminosilicate mixed chloro-iodo sodalite. Ind. J. Phys. 84, 133–141 (2010)

    Article  Google Scholar 

  64. Weller, M.; Wong, G.: Characterization of novel sodalites by neutron diffraction and solid state NMR. Solid State Ionic 32(33), 430–435 (1989)

    Article  Google Scholar 

  65. De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016)

    Google Scholar 

  66. Hossain, M.A.; Ngo, H.H.; Guo, W.S.; Setiadi, T.: Adsorption and desorption of copper (II) ions onto garden grass. Bioresour. Technol. 121, 386–395 (2012)

    Article  Google Scholar 

  67. Annadurai, G.; Juang, R.S.; Lee, D.J.: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard Mater. 92, 263–274 (2002)

    Article  Google Scholar 

  68. Sharma, P.; Baskar, R.C.; Chung, W.J.: Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259, 249–257 (2010)

    Article  Google Scholar 

  69. Glasser, F.; Macphee, D.: Immobilisation science of cement systems. Mater. Res. Soc. Bull. 18, 66–71 (1993)

    Google Scholar 

  70. Jha, V.K.; Nagae, M.; Matsuda, M.: Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus obtained zeolite X in multi-metal systems. J. Environ. Manag. 90, 2507–2514 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok V. Borhade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borhade, A.V., Kshirsagar, T.A. & Dholi, A.G. Eco-Friendly Synthesis of Aluminosilicate Bromo Sodalite from Waste Coal Fly Ash for the Removal of Copper and Methylene Blue Dye. Arab J Sci Eng 42, 4479–4491 (2017). https://doi.org/10.1007/s13369-017-2759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2759-9

Keywords

  • Fly ash
  • Fusion
  • Hydrothermal
  • Sodalite
  • X-ray diffraction
  • Methylene blue
  • Adsorption